Goto

Collaborating Authors

Man Ho Lam 1 Eric John Li

Neural Information Processing Systems

Evaluating Large Language Models' (LLMs) anthropomorphic capabilities has become increasingly important in contemporary discourse. Utilizing the emotion appraisal theory from psychology, we propose to evaluate the empathy ability of LLMs, i.e., how their feelings change when presented with specific situations. After a careful and comprehensive survey, we collect a dataset containing over 400 situations that have proven effective in eliciting the eight emotions central to our study. Categorizing the situations into 36 factors, we conduct a human evaluation involving more than 1,200 subjects worldwide. With the human evaluation results as references, our evaluation includes seven LLMs, covering both commercial and open-source models, including variations in model sizes, featuring the latest iterations, such as GPT-4, Mixtral-8x22B, and LLaMA-3.1. We find that, despite several misalignments, LLMs can generally respond appropriately to certain situations. Nevertheless, they fall short in alignment with the emotional behaviors of human beings and cannot establish connections between similar situations.


Rethinking Deep Thinking: Stable Learning of Algorithms using Lipschitz Constraints

Neural Information Processing Systems

Iterative algorithms solve problems by taking steps until a solution is reached. Models in the form of Deep Thinking (DT) networks have been demonstrated to learn iterative algorithms in a way that can scale to different sized problems at inference time using recurrent computation and convolutions. However, they are often unstable during training, and have no guarantees of convergence/termination at the solution. This paper addresses the problem of instability by analyzing the growth in intermediate representations, allowing us to build models (referred to as Deep Thinking with Lipschitz Constraints (DT-L)) with many fewer parameters and providing more reliable solutions. Additionally our DT-L formulation provides guarantees of convergence of the learned iterative procedure to a unique solution at inference time. We demonstrate DT-L is capable of robustly learning algorithms which extrapolate to harder problems than in the training set. We benchmark on the traveling salesperson problem to evaluate the capabilities of the modified system in an NP-hard problem where DT fails to learn.


RectifID: Personalizing Rectified Flow with Anchored Classifier Guidance

Neural Information Processing Systems

Customizing diffusion models to generate identity-preserving images from userprovided reference images is an intriguing new problem. The prevalent approaches typically require training on extensive domain-specific images to achieve identity preservation, which lacks flexibility across different use cases. To address this issue, we exploit classifier guidance, a training-free technique that steers diffusion models using an existing classifier, for personalized image generation. Our study shows that based on a recent rectified flow framework, the major limitation of vanilla classifier guidance in requiring a special classifier can be resolved with a simple fixed-point solution, allowing flexible personalization with off-the-shelf image discriminators. Moreover, its solving procedure proves to be stable when anchored to a reference flow trajectory, with a convergence guarantee. The derived method is implemented on rectified flow with different off-the-shelf image discriminators, delivering advantageous personalization results for human faces, live subjects, and certain objects.


RealCompo: Balancing Realism and Compositionality Improves Text-to-Image Diffusion Models

Neural Information Processing Systems

Diffusion models have achieved remarkable advancements in text-to-image generation. However, existing models still have many difficulties when faced with multiple-object compositional generation. In this paper, we propose RealCompo, a new training-free and transferred-friendly text-to-image generation framework, which aims to leverage the respective advantages of text-to-image models and spatial-aware image diffusion models (e.g., layout, keypoints and segmentation maps) to enhance both realism and compositionality of the generated images. An intuitive and novel balancer is proposed to dynamically balance the strengths of the two models in denoising process, allowing plug-and-play use of any model without extra training. Extensive experiments show that our RealCompo consistently outperforms state-of-the-art text-to-image models and spatial-aware image diffusion models in multiple-object compositional generation while keeping satisfactory realism and compositionality of the generated images. Notably, our RealCompo can be seamlessly extended with a wide range of spatial-aware image diffusion models and stylized diffusion models.


af97b61e9fef8f55e32a2602af364d8c-Supplemental-Datasets_and_Benchmarks_Track.pdf

Neural Information Processing Systems

The frame's origin is fixed at The motion equations are derived from Newton's second law for an air vehicle, resulting in six core The aerodynamic drag D, cross force C, and lift L account for the effects of external airflow. The inputs for the FPEs are the aircraft's attitude quaternion components along with the components The rigid-body kinematic equations (KEs) using the aircraft's attitude quaternion components [9] are The system comprising (CLMEs)-(CAMEs)-(FPEs)-(KEs), i.e., 1, 12, 15, and 16, represents The task scenarios can be categorized by objectives into Heading, Control, and Tracking. This work designs a hierarchical control algorithm for this task. RL Methods We use PPO for Heading and Control tasks in fixed-wing aircraft. The structure for hierarchical RL method is shown in Figure 10. The PPO algorithm's parameter settings are as follows: the learning rate is set to 3 10 "128 128", and the recurrent hidden layer size is 128 with a single recurrent layer.


NeuralPlane: An Efficiently Parallelizable Platform for Fixed-wing Aircraft Control with Reinforcement Learning

Neural Information Processing Systems

Reinforcement learning (RL) demonstrates superior potential over traditional flight control methods for fixed-wing aircraft, particularly under extreme operational conditions. However, the high demand for training samples and the lack of efficient computation in existing simulators hinder its further application. In this paper, we introduce NeuralPlane, the first benchmark platform for large-scale parallel simulations of fixed-wing aircraft. NeuralPlane significantly boosts high-fidelity simulation via GPU-accelerated Flight Dynamics Model (FDM) computation, achieving a single-step simulation time of just 0.2 seconds at a parallel scale of 10


Trading Place for Space: Increasing Location Resolution Reduces Contextual Capacity in Hippocampal Codes Spencer Rooke Zhaoze Wang 2 Ronald W. Di Tullio 3

Neural Information Processing Systems

Many animals learn cognitive maps of their environment - a simultaneous representation of context, experience, and position. Place cells in the hippocampus, named for their explicit encoding of position, are believed to be a neural substrate of these maps, with place cell "remapping" explaining how this system can represent different contexts. Briefly, place cells alter their firing properties, or "remap", in response to changes in experiential or sensory cues. Substantial sensory changes, produced, e.g., by moving between environments, cause large subpopulations of place cells to change their tuning entirely. While many studies have looked at the physiological basis of remapping, we lack explicit calculations of how the contextual capacity of the place cell system changes as a function of place field firing properties.


Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models

Neural Information Processing Systems

Beyond estimating parameters of interest from data, one of the key goals of statistical inference is to properly quantify uncertainty in these estimates. In Bayesian inference, this uncertainty is provided by the posterior distribution, the computation of which typically involves an intractable high-dimensional integral. Among available approximation methods, sampling-based approaches come with strong theoretical guarantees but scale poorly to large problems, while variational approaches scale well but offer few theoretical guarantees. In particular, variational methods are known to produce overconfident estimates of posterior uncertainty and are typically non-identifiable, with many latent variable configurations generating equivalent predictions. Here, we address these challenges by showing how diffusion-based models (DBMs), which have recently produced state-of-the-art performance in generative modeling tasks, can be repurposed for performing calibrated, identifiable Bayesian inference. By exploiting a previously established connection between the stochastic and probability flow ordinary differential equations (pfODEs) underlying DBMs, we derive a class of models, inflationary flows, that uniquely and deterministically map high-dimensional data to a lower-dimensional Gaussian distribution via ODE integration. This map is both invertible and neighborhood-preserving, with controllable numerical error, with the result that uncertainties in the data are correctly propagated to the latent space. We demonstrate how such maps can be learned via standard DBM training using a novel noise schedule and are effective at both preserving and reducing intrinsic data dimensionality. The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space, that afford principled Bayesian inference.


StrategyLLM: Large Language Models as Strategy Generators, Executors, Optimizers, and Evaluators for Problem Solving

Neural Information Processing Systems

Most existing prompting methods suffer from the issues of generalizability and consistency, as they often rely on instance-specific solutions that may not be applicable to other instances and lack task-level consistency across the selected few-shot examples. To address these limitations, we propose a comprehensive framework, StrategyLLM, allowing LLMs to perform inductive reasoning, deriving general strategies from specific task instances, and deductive reasoning, applying these general strategies to particular task examples, for constructing generalizable and consistent few-shot prompts. It employs four LLM-based agents: strategy generator, executor, optimizer, and evaluator, working together to generate, evaluate, and select promising strategies for a given task. Experimental results demonstrate that StrategyLLM outperforms the competitive baseline CoT-SC that requires human-annotated solutions on 13 datasets across 4 challenging tasks without human involvement, including math reasoning (34.2% 38.8%), commonsense reasoning (70.3% 72.5%), algorithmic reasoning (73.7% 85.0%), and symbolic reasoning (30.0%


The Power of Hard Attention Transformers on Data Sequences: A Formal Language Theoretic Perspective Chris Köcher RPTU Kaiserslautern-Landau

Neural Information Processing Systems

Formal language theory has recently been successfully employed to unravel the power of transformer encoders. This setting is primarily applicable in Natural Language Processing (NLP), as a token embedding function (where a bounded number of tokens is admitted) is first applied before feeding the input to the transformer.