Verified Safe Reinforcement Learning for Neural Network Dynamic Models
Learning reliably safe autonomous control is one of the core problems in trustworthy autonomy. However, training a controller that can be formally verified to be safe remains a major challenge. We introduce a novel approach for learning verified safe control policies in nonlinear neural dynamical systems while maximizing overall performance. Our approach aims to achieve safety in the sense of finite-horizon reachability proofs, and is comprised of three key parts. The first is a novel curriculum learning scheme that iteratively increases the verified safe horizon. The second leverages the iterative nature of gradient-based learning to leverage incremental verification, reusing information from prior verification runs. Finally, we learn multiple verified initial-state-dependent controllers, an idea that is especially valuable for more complex domains where learning a single universal verified safe controller is extremely challenging. Our experiments on five safe control problems demonstrate that our trained controllers can achieve verified safety over horizons that are as much as an order of magnitude longer than state-of-the-art baselines, while maintaining high reward, as well as a perfect safety record over entire episodes. Our code is available at https://github.com/jlwu002/VSRL.
represents the counterfactual value of Y = y
Recent advances in AI have been significantly driven by the capabilities of large language models (LLMs) to solve complex problems in ways that resemble human thinking. However, there is an ongoing debate about the extent to which LLMs are capable of actual reasoning. Central to this debate are two key probabilistic concepts that are essential for connecting causes to their effects: the probability of necessity (PN) and the probability of sufficiency (PS). This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms using these probabilistic measures. By viewing LLMs as abstract machines that process information through a natural language interface, we examine the conditions under which it is possible to compute suitable approximations of PN and PS. Our research marks an important step towards gaining a deeper understanding of when LLMs are capable of reasoning, as illustrated by a series of math examples.
NeurIPS24_QuadMamba (64).pdf
Recent advancements in State Space Models, notably Mamba, have demonstrated superior performance over the dominant Transformer models, particularly in reducing the computational complexity from quadratic to linear. Yet, difficulties in adapting Mamba from language to vision tasks arise due to the distinct characteristics of visual data, such as the spatial locality and adjacency within images and large variations in information granularity across visual tokens. Existing vision Mamba approaches either flatten tokens into sequences in a raster scan fashion, which breaks the local adjacency of images, or manually partition tokens into windows, which limits their long-range modeling and generalization capabilities. To address these limitations, we present a new vision Mamba model, coined QuadMamba, that effectively captures local dependencies of varying granularities via quadtree-based image partition and scan. Concretely, our lightweight quadtree-based scan module learns to preserve the 2D locality of spatial regions within learned window quadrants. The module estimates the locality score of each token from their features, before adaptively partitioning tokens into window quadrants. An omnidirectional window shifting scheme is also introduced to capture more intact and informative features across different local regions. To make the discretized quadtree partition end-to-end trainable, we further devise a sequence masking strategy based on Gumbel-Softmax and its straight-through gradient estimator. Extensive experiments demonstrate that QuadMamba achieves state-of-the-art performance in various vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation.
Oracle-Efficient Reinforcement Learning for Max Value Ensembles
Reinforcement learning (RL) in large or infinite state spaces is notoriously challenging, both theoretically (where worst-case sample and computational complexities must scale with state space cardinality) and experimentally (where function approximation and policy gradient techniques often scale poorly and suffer from instability and high variance). One line of research attempting to address these difficulties makes the natural assumption that we are given a collection of base or constituent policies (possibly heuristic) upon which we would like to improve in a scalable manner. In this work we aim to compete with the max-following policy, which at each state follows the action of whichever constituent policy has the highest value. The max-following policy is always at least as good as the best constituent policy, and may be considerably better. Our main result is an efficient algorithm that learns to compete with the max-following policy, given only access to the constituent policies (but not their value functions). In contrast to prior work in similar settings, our theoretical results require only the minimal assumption of an ERM oracle for value function approximation for the constituent policies (and not the global optimal policy or the max-following policy itself) on samplable distributions. We illustrate our algorithm's experimental effectiveness and behavior on several robotic simulation testbeds.
Wei Liu 1 Zhiying Deng 1 Jun Wang
An important line of research in the field of explainability is to extract a small subset of crucial rationales from the full input. The most widely used criterion for rationale extraction is the maximum mutual information (MMI) criterion. However, in certain datasets, there are spurious features non-causally correlated with the label and also get high mutual information, complicating the loss landscape of MMI. Although some penalty-based methods have been developed to penalize the spurious features (e.g., invariance penalty, intervention penalty, etc) to help MMI work better, these are merely remedial measures. In the optimization objectives of these methods, spurious features are still distinguished from plain noise, which hinders the discovery of causal rationales.
Adaptive Sampling for Efficient Softmax Approximation
The softmax function is ubiquitous in machine learning and optimization applications. Computing the full softmax evaluation of a matrix-vector product can be computationally expensive in high-dimensional settings. In many applications, however, it is sufficient to calculate only the top few outputs of the softmax function. In this work, we present an algorithm, dubbed AdaptiveSoftmax, that adaptively computes the top k softmax values more efficiently than the full softmax computation, with probabilistic guarantees. We demonstrate the sample efficiency improvements afforded by AdaptiveSoftmax on real and synthetic data to corroborate our theoretical results.
Pruning neural network models for gene regulatory dynamics using data and domain knowledge
It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it aligns with already available domain knowledge-a dimension that is currently largely disregarded in the comparison of neural network models. While pruning can simplify deep neural network architectures and excels in identifying sparse models, as we show in the context of gene regulatory network inference, state-of-the-art techniques struggle with biologically meaningful structure learning.