Goto

Collaborating Authors


Self-Powered Fabric Can Help Correct Posture in Real Time with the Help of Machine Learning

#artificialintelligence

The data collected by the sensors is processed by an integrated machine learning algorithm that can provide immediate feedback, alerting the …



Day 15–60 days of Data Science and Machine Learning

#artificialintelligence

Hope you all had a great Halloween weekend [ I dressed up as "Mother of Dragons" along with my cool " Game of thrones" techie friends];) #winteriscoming. Let's get back and learn some more data science and machine learning. I hope you all have already grasped the Python essentials, Statistics and Maths from day 1 -- day 8(links shared below), Pandas part 1 and part 2 on Day 9, Day 10, Numpy as Day 11, Data Preprocessing Part 1 as Day 12, Data Preprocessing part 2 as Day 13th, Hands on Regression Part 1 as Day 14th. In this post we will cover how we can implement Regression -- part 2 as Day 15. The Linear Regression method is basically a linear approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) as it just minimizes the least squares error: for one object target y x T * w, where w is model's weights.


Ethics in Robotics and Artificial Intelligence

#artificialintelligence

As robots are becoming increasingly intelligent and autonomous, from self-driving cars to assistive robots for vulnerable populations, important ethical questions inevitably emerge wherever and whenever such robots interact with humans and thereby impact human well-being. Questions that must be answered include whether such robots should be deployed in human societies in fairly unconstrained environments and what kinds of provisions are needed in robotic control systems to ensure that autonomous machines will not cause humans harms or at least minimize harm when it cannot be avoided. The goal of this specialty is to provide the first interdisciplinary forum for philosophers, psychologists, legal experts, AI researchers and roboticists to disseminate their work specifically targeting the ethical aspects of autonomous intelligent robots. Note that the conjunction of "AI and robotics" here indicates the journal's intended focus is on the ethics of intelligent autonomous robots, not the ethics of AI in general or the ethics of non-intelligent, non-autonomous machines. Examples of questions that we seek to address in this journal are: -- computational architectures for moral machines -- algorithms for moral reasoning, planning, and decision-making -- formal representations of moral principles in robots -- computational frameworks for robot ethics -- human perceptions and the social impact of moral machines -- legal aspects of developing and disseminating moral machines -- algorithms for learning and applying moral principles -- implications of robotic embodiment/physical presence in social space -- variance of ethical challenges across different contexts of human -robot interaction


GitHub's AI-powered coding tool will be free for students – TechCrunch

#artificialintelligence

Last June, Microsoft-owned GitHub and OpenAI launched Copilot, a service that provides suggestions for whole lines of code inside development environments like Microsoft Visual Studio. Available as a downloadable extension, Copilot is powered by an AI model called Codex that's trained on billions of lines of public code to suggest additional lines of code and functions given the context of existing code. Copilot can also surface an approach or solution in response to a description of what a developer wants to accomplish (e.g. "Say hello world"), drawing on its knowledge base and current context. While Copilot was previously available in technical preview, it'll become generally available starting sometime this summer, Microsoft announced at Build 2022.


Handwriting Declines With Human Aging: A Machine Learning Study

#artificialintelligence

BackgroundHandwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders.Materials and MethodsOne-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm.ResultsStroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and A...


Using Data Science to Catch Criminals

#artificialintelligence

The power of data science is not limited to solving technical or business issues. Its usage is not limited to data analytics to create new technologies, target ads to consumers, and maximize profits and sales in business. The concept of open science has led organizations to use data to handle social problems. It can offer a statistical and data-driven solution to hidden human behavior and cultural patterns. We will be using data from the San Francisco crime department to understand the relation between civilian-reported incidents of crime and police-reported incidents of crime. To store and readily access a large amount of data, we will be using GridDB as our database platform.


Tiny robotic crab is smallest-ever remote-controlled walking robot: Smaller than a flea, robot can walk, bend, twist, turn and jump

#artificialintelligence

Just a half-millimeter wide, the tiny crabs can bend, twist, crawl, walk, turn and even jump. The researchers also developed millimeter-sized robots resembling inchworms, crickets and beetles. Although the research is exploratory at this point, the researchers believe their technology might bring the field closer to realizing micro-sized robots that can perform practical tasks inside tightly confined spaces. The research will be published on Wednesday (May 25) in the journal Science Robotics. Last September, the same team introduced a winged microchip that was the smallest-ever human-made flying structure.


Deep Studying with Label Differential Privateness - Channel969

#artificialintelligence

Over the past a number of years, there was an elevated give attention to growing differential privateness (DP) machine studying (ML) algorithms. DP has been the idea of a number of sensible deployments in business -- and has even been employed by the U.S. Census -- as a result of it allows the understanding of system and algorithm privateness ensures. The underlying assumption of DP is that altering a single person's contribution to an algorithm mustn't considerably change its output distribution. In the usual supervised studying setting, a mannequin is educated to make a prediction of the label for every enter given a coaching set of instance pairs {[input1,label1], …, [inputn, labeln]}. Within the case of deep studying, earlier work launched a DP coaching framework, DP-SGD, that was built-in into TensorFlow and PyTorch.