Europe
On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane Arash Behboodi Qualcomm AI Research, Amsterdam
Cryo-Electron Microscopy (Cryo-EM) is an important imaging method which allows high-resolution reconstruction of the 3D structures of biomolecules. It produces highly noisy 2D images by projecting a molecule's 3D density from random viewing directions. Because the projection directions are unknown, estimating the images' poses is necessary to perform the reconstruction. We focus on this task and study it under the group synchronization framework: if the relative poses of pairs of images can be approximated from the data, an estimation of the images' poses is given by the assignment which is most consistent with the relative ones. In particular, by studying the symmetries of cryo-EM, we show that relative poses in the group O(2) provide sufficient constraints to identify the images' poses, up to the molecule's chirality. With this in mind, we improve the existing multi-frequency vector diffusion maps (MFVDM) method: by using O(2) relative poses, our method not only predicts the similarity between the images' viewing directions but also recovers their poses. Hence, we can leverage all input images in a 3D reconstruction algorithm by initializing the poses with our estimation rather than just clustering and averaging the input images. We validate the recovery capabilities and robustness of our method on randomly generated synchronization graphs and a synthetic cryo-EM dataset.
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties Bosch Center for Artificial Intelligence, Renningen, Germany
Deep Gaussian Processes learn probabilistic data representations for supervised learning by cascading multiple Gaussian Processes. While this model family promises flexible predictive distributions, exact inference is not tractable. Approximate inference techniques trade off the ability to closely resemble the posterior distribution against speed of convergence and computational efficiency. We propose a novel Gaussian variational family that allows for retaining covariances between latent processes while achieving fast convergence by marginalising out all global latent variables. After providing a proof of how this marginalisation can be done for general covariances, we restrict them to the ones we empirically found to be most important in order to also achieve computational efficiency. We provide an efficient implementation of our new approach and apply it to several benchmark datasets. It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties Bosch Center for Artificial Intelligence, Renningen, Germany
Deep Gaussian Processes learn probabilistic data representations for supervised learning by cascading multiple Gaussian Processes. While this model family promises flexible predictive distributions, exact inference is not tractable. Approximate inference techniques trade off the ability to closely resemble the posterior distribution against speed of convergence and computational efficiency. We propose a novel Gaussian variational family that allows for retaining covariances between latent processes while achieving fast convergence by marginalising out all global latent variables. After providing a proof of how this marginalisation can be done for general covariances, we restrict them to the ones we empirically found to be most important in order to also achieve computational efficiency. We provide an efficient implementation of our new approach and apply it to several benchmark datasets. It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, CATER can effectively identify IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs.
Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination
This paper investigates the problem of best arm identification in contaminated stochastic multi-arm bandits. In this setting, the rewards obtained from any arm are replaced by samples from an adversarial model with probability ε. A fixed confidence (infinite-horizon) setting is considered, where the goal of the learner is to identify the arm with the largest mean. Owing to the adversarial contamination of the rewards, each arm's mean is only partially identifiable. This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits. These algorithms involve mean estimates that achieve the optimal error guarantee on the deviation of the true mean from the estimate asymptotically. Furthermore, these algorithms asymptotically achieve the optimal sample complexity. Specifically, for the gap-based algorithm, the sample complexity is asymptotically optimal up to constant factors, while for the successive elimination-based algorithm, it is optimal up to logarithmic factors. Finally, numerical experiments are provided to illustrate the gains of the algorithms compared to the existing baselines.
Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces
Chuan Guo, Ali Mousavi, Xiang Wu, Daniel N. Holtmann-Rice, Satyen Kale, Sashank Reddi, Sanjiv Kumar
In extreme classification settings, embedding-based neural network models are currently not competitive with sparse linear and tree-based methods in terms of accuracy. Most prior works attribute this poor performance to the low-dimensional bottleneck in embedding-based methods. In this paper, we demonstrate that theoretically there is no limitation to using low-dimensional embedding-based methods, and provide experimental evidence that overfitting is the root cause of the poor performance of embedding-based methods. These findings motivate us to investigate novel data augmentation and regularization techniques to mitigate overfitting. To this end, we propose GLaS, a new regularizer for embedding-based neural network approaches. It is a natural generalization from the graph Laplacian and spread-out regularizers, and empirically it addresses the drawback of each regularizer alone when applied to the extreme classification setup. With the proposed techniques, we attain or improve upon the state-of-the-art on most widely tested public extreme classification datasets with hundreds of thousands of labels.
Semantic HELM: A Human-Readable Memory for Reinforcement Learning Fabian Paischer, Thomas Adler 1
Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, existing methods lack interpretability in the sense that it is not comprehensible for humans what the agent stores in its memory. In this regard, we propose a novel memory mechanism that represents past events in human language.
Navigating the Pitfalls of Active Learning Evaluation: A Systematic Framework for Meaningful Performance Assessment Carsten T. Lüth 1,2 Till J. Bungert 1,2 Lukas Klein
Active Learning (AL) aims to reduce the labeling burden by interactively selecting the most informative samples from a pool of unlabeled data. While there has been extensive research on improving AL query methods in recent years, some studies have questioned the effectiveness of AL compared to emerging paradigms such as semi-supervised (Semi-SL) and self-supervised learning (Self-SL), or a simple optimization of classifier configurations. Thus, today's AL literature presents an inconsistent and contradictory landscape, leaving practitioners uncertain about whether and how to use AL in their tasks. In this work, we make the case that this inconsistency arises from a lack of systematic and realistic evaluation of AL methods. Specifically, we identify five key pitfalls in the current literature that reflect the delicate considerations required for AL evaluation. Further, we present an evaluation framework that overcomes these pitfalls and thus enables meaningful statements about the performance of AL methods. To demonstrate the relevance of our protocol, we present a large-scale empirical study and benchmark for image classification spanning various data sets, query methods, AL settings, and training paradigms. Our findings clarify the inconsistent picture in the literature and enable us to give hands-on recommendations for practitioners.
Scale-invariant Learning by Physics Inversion
Solving inverse problems, such as parameter estimation and optimal control, is a vital part of science. Many experiments repeatedly collect data and rely on machine learning algorithms to quickly infer solutions to the associated inverse problems. We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes. The highly nonlinear behavior, common in physical processes, results in strongly varying gradients that lead first-order optimizers like SGD or Adam to compute suboptimal optimization directions. We propose a novel hybrid training approach that combines higherorder optimization methods with machine learning techniques. We take updates from a scale-invariant inverse problem solver and embed them into the gradientdescent-based learning pipeline, replacing the regular gradient of the physical process. We demonstrate the capabilities of our method on a variety of canonical physical systems, showing that it yields significant improvements on a wide range of optimization and learning problems.