Education


Using CD with machine learning models to tackle fraud

#artificialintelligence

Credit card fraudsters are always changing their behavior, developing new tactics. For banks, the damage isn't just financial; their reputations are also on the line. So how do banks stay ahead of the crooks? For many, detection algorithms are essential. Given enough data, a supervised machine learning model can learn to detect fraud in new credit card applications. This model will give each application a score -- typically between 0 and 1 -- to indicate the likelihood that it's fraudulent. The banks can then set a threshold for which they regard an application as fraudulent or not -- typically that threshold will enable the bank to keep false positives and false negatives at a level it finds acceptable. False positives are the genuine applications that have been mistaken as fraud; false negatives are the fraudulent applications that are missed.


Deep Double Descent

#artificialintelligence

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don't yet fully understand why it happens, and view further study of this phenomenon as an important research direction. The peak occurs predictably at a "critical regime," where the models are barely able to fit the training set. As we increase the number of parameters in a neural network, the test error initially decreases, increases, and, just as the model is able to fit the train set, undergoes a second descent.


Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion

Neural Information Processing Systems

We introduce a new objective function for pool-based Bayesian active learning with probabilistic hypotheses. This objective function, called the policy Gibbs error, is the expected error rate of a random classifier drawn from the prior distribution on the examples adaptively selected by the active learning policy. Exact maximization of the policy Gibbs error is hard, so we propose a greedy strategy that maximizes the Gibbs error at each iteration, where the Gibbs error on an instance is the expected error of a random classifier selected from the posterior label distribution on that instance. We apply this maximum Gibbs error criterion to three active learning scenarios: non-adaptive, adaptive, and batch active learning. In each scenario, we prove that the criterion achieves near-maximal policy Gibbs error when constrained to a fixed budget.


Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

Neural Information Processing Systems

We propose a novel sampling framework for inference in probabilistic models: an active learning approach that converges more quickly (in wall-clock time) than Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in probabilistic inference is numerical integration, to average over ensembles of models or unknown (hyper-)parameters (for example to compute marginal likelihood or a partition function). MCMC has provided approaches to numerical integration that deliver state-of-the-art inference, but can suffer from sample inefficiency and poor convergence diagnostics. Bayesian quadrature techniques offer a model-based solution to such problems, but their uptake has been hindered by prohibitive computation costs. We introduce a warped model for probabilistic integrands (likelihoods) that are known to be non-negative, permitting a cheap active learning scheme to optimally select sample locations.


Statistical Active Learning Algorithms

Neural Information Processing Systems

We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on $1/(1-2\eta)$, where $\eta$ is the noise rate. We demonstrate the power of our framework by showing that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first known computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error $\epsilon$ over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case."


A Novel Two-Step Method for Cross Language Representation Learning

Neural Information Processing Systems

Cross language text classification is an important learning task in natural language processing. A critical challenge of cross language learning lies in that words of different languages are in disjoint feature spaces. In this paper, we propose a two-step representation learning method to bridge the feature spaces of different languages by exploiting a set of parallel bilingual documents. Specifically, we first formulate a matrix completion problem to produce a complete parallel document-term matrix for all documents in two languages, and then induce a cross-lingual document representation by applying latent semantic indexing on the obtained matrix. We use a projected gradient descent algorithm to solve the formulated matrix completion problem with convergence guarantees.


Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes

Neural Information Processing Systems

The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-task classification setting for this purpose, and establish connections to the meta- and few-shot learning literature. The resulting approach, called CNAPs, comprises a classifier whose parameters are modulated by an adaptation network that takes the current task's dataset as input. We demonstrate that CNAPs achieves state-of-the-art results on the challenging Meta-Dataset benchmark indicating high-quality transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot regimes and under-fitting in high-shot regimes.


Deep State Space Models for Time Series Forecasting

Neural Information Processing Systems

We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning. By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches. Our method scales gracefully from regimes where little training data is available to regimes where data from millions of time series can be leveraged to learn accurate models. We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art. Papers published at the Neural Information Processing Systems Conference.


Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization

Neural Information Processing Systems

There is a natural correlation between the visual and auditive elements of a video. In this work we leverage this connection to learn general and effective models for both audio and video analysis from self-supervised temporal synchronization. We demonstrate that a calibrated curriculum learning scheme, a careful choice of negative examples, and the use of a contrastive loss are critical ingredients to obtain powerful multi-sensory representations from models optimized to discern temporal synchronization of audio-video pairs. Without further fine-tuning, the resulting audio features achieve performance superior or comparable to the state-of-the-art on established audio classification benchmarks (DCASE2014 and ESC-50). At the same time, our visual subnet provides a very effective initialization to improve the accuracy of video-based action recognition models: compared to learning from scratch, our self-supervised pretraining yields a remarkable gain of 19.9% in action recognition accuracy on UCF101 and a boost of 17.7% on HMDB51.


Efficient Optimization for Sparse Gaussian Process Regression

Neural Information Processing Systems

We propose an efficient discrete optimization algorithm for selecting a subset of training data to induce sparsity for Gaussian process regression. The algorithm estimates this inducing set and the hyperparameters using a single objective, either the marginal likelihood or a variational free energy. The space and time complexity are linear in the training set size, and the algorithm can be applied to large regression problems on discrete or continuous domains. Empirical evaluation shows state-of-art performance in the discrete case and competitive results in the continuous case. Papers published at the Neural Information Processing Systems Conference.