China
Panchromatic and Multispectral Image Fusion via Alternating Reverse Filtering Network (Supplementary Materials)
The best results are highlighted by bold. It can be clearly seen that our alternating reverse filtering network performs the best compared with other state-of-the-art methods in all the indexes, indicating the superiority of our proposed method. Images in the last row are the MSE residues between the fused results and the ground truth. Compared with other competing methods, our model has minor spatial and spectral distortions. It can be easily concluded from the observation of MSE maps.
Wheeled, rugged robot dog built for extreme industrial missions
The machine is designed to inspect industrial sites, respond to disasters, carry out logistics operations and support scientific research. Deep Robotics, a company from China, has unveiled a durable four-legged robot built to operate in extreme environments that humans struggle to traverse. It's called the Lynx M20, and it builds upon the agility of its predecessor, the Lynx robot dog. This versatile machine is designed to handle anything from inspecting industrial sites and responding to disasters to carrying out logistics operations and supporting scientific research. Here's what you need to know.
ICNet: Intra-saliency Correlation Network for Co-Saliency Detection
Model-based methods produce coarse Co-SOD results due to hand-crafted intra-and inter-saliency features. Current data-driven models exploit inter-saliency cues, but undervalue the potential power of intra-saliency cues. In this paper, we propose an Intra-saliency Correlation Network (ICNet) to extract intra-saliency cues from the single image saliency maps (SISMs) predicted by any off-the-shelf SOD method, and obtain inter-saliency cues by correlation techniques. Specifically, we adopt normalized masked average pooling (NMAP) to extract latent intra-saliency categories from the SISMs and semantic features as intra cues. Then we employ a correlation fusion module (CFM) to obtain inter cues by exploiting correlations between the intra cues and single-image features. To improve Co-SOD performance, we propose a category-independent rearranged self-correlation feature (RSCF) strategy. Experiments on three benchmarks show that our ICNet outperforms previous state-of-the-art methods on Co-SOD.
LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models You Chen Department of Computer Science Department of Computer Science Tsinghua University
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks.
The Image Local Autoregressive Transformer
Recently, AutoRegressive (AR) models for the whole image generation empowered by transformers have achieved comparable or even better performance compared to Generative Adversarial Networks (GANs). Unfortunately, directly applying such AR models to edit/change local image regions, may suffer from the problems of missing global information, slow inference speed, and information leakage of local guidance. To address these limitations, we propose a novel model - image Local Autoregressive Transformer (iLAT), to better facilitate the locally guided image synthesis. Our iLAT learns the novel local discrete representations, by the newly proposed local autoregressive (LA) transformer of the attention mask and convolution mechanism. Thus iLAT can efficiently synthesize the local image regions by key guidance information. Our iLAT is evaluated on various locally guided image syntheses, such as pose-guided person image synthesis and face editing. Both quantitative and qualitative results show the efficacy of our model.
Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection
While numerous Video Violence Detection (VVD) methods have focused on representation learning in Euclidean space, they struggle to learn sufficiently discriminative features, leading to weaknesses in recognizing normal events that are visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic representation learning, renowned for its ability to model hierarchical and complex relationships between events, has the potential to amplify the discrimination between visually similar events. Inspired by these, we develop a novel Dual-Space Representation Learning (DSRL) method for weakly supervised VVD to utilize the strength of both Euclidean and hyperbolic geometries, capturing the visual features of events while also exploring the intrinsic relations between events, thereby enhancing the discriminative capacity of the features. DSRL employs a novel information aggregation strategy to progressively learn event context in hyperbolic spaces, which selects aggregation nodes through layer-sensitive hyperbolic association degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL attempts to break the cyber-balkanization of different spaces, utilizing cross-space attention to facilitate information interactions between Euclidean and hyperbolic space to capture better discriminative features for final violence detection. Comprehensive experiments demonstrate the effectiveness of our proposed DSRL.
Rectifying the Shortcut Learning of Background for Few-Shot Learning
The category gap between training and evaluation has been characterised as one of the main obstacles to the success of Few-Shot Learning (FSL). In this paper, we for the first time empirically identify image background, common in realistic images, as a shortcut knowledge helpful for in-class classification but ungeneralizable beyond training categories in FSL. A novel framework, COSOC, is designed to tackle this problem by extracting foreground objects in images at both training and evaluation without any extra supervision. Extensive experiments carried on inductive FSL tasks demonstrate the effectiveness of our approaches.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer
Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, Jing Tang
Recently, Transformer has become a prevailing deep architecture for solving vehicle routing problems (VRPs). However, it is less effective in learning improvement models for VRP because its positional encoding (PE) method is not suitable in representing VRP solutions. This paper presents a novel Dual-Aspect Collaborative Transformer (DACT) to learn embeddings for the node and positional features separately, instead of fusing them together as done in existing ones, so as to avoid potential noises and incompatible correlations. Moreover, the positional features are embedded through a novel cyclic positional encoding (CPE) method to allow Transformer to effectively capture the circularity and symmetry of VRP solutions (i.e., cyclic sequences). We train DACT using Proximal Policy Optimization and design a curriculum learning strategy for better sample efficiency. We apply DACT to solve the traveling salesman problem (TSP) and capacitated vehicle routing problem (CVRP). Results show that our DACT outperforms existing Transformer based improvement models, and exhibits much better generalization performance across different problem sizes on synthetic and benchmark instances, respectively.
US chip export controls are a 'failure' because they spur Chinese development, Nvidia boss says
US chip exports controls have been a "failure", the head of Nvidia, Jensen Huang, told a tech forum on Wednesday, as the Chinese government separately slammed US warnings to other countries against using Chinese tech. Successive US administrations have imposed restrictions on the sale of hi-tech AI chips to China, in an effort to curb China's military advancement and protect US dominance of the AI industry. But Huang told the Computex tech forum in Taipei that the controls had instead spurred on Chinese developers. "The local companies are very, very talented and very determined, and the export control gave them the spirit, the energy and the government support to accelerate their development," Huang told media the Computex tech show in Taipei. "I think, all in all, the export control was a failure."