Neural Information Processing Systems


Safe Policy Improvement by Minimizing Robust Baseline Regret

Neural Information Processing Systems

An important problem in sequential decision-making under uncertainty is to use limited data to compute a safe policy, i.e., a policy that is guaranteed to perform at least as well as a given baseline strategy. In this paper, we develop and analyze a new model-based approach to compute a safe policy when we have access to an inaccurate dynamics model of the system with known accuracy guarantees. Our proposed robust method uses this (inaccurate) model to directly minimize the (negative) regret w.r.t. the baseline policy. Contrary to the existing approaches, minimizing the regret allows one to improve the baseline policy in states with accurate dynamics and seamlessly fall back to the baseline policy, otherwise. We show that our formulation is NP-hard and propose an approximate algorithm.


Budgeted Reinforcement Learning in Continuous State Space

Neural Information Processing Systems

A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of an upper bound on a constrains violation signal that -- importantly -- can be modified in real-time. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is the fixed point of a novel Budgeted Bellman Optimality operator.