AI Magazine


AAAI Conferences Calendar

AI Magazine

This page includes forthcoming AAAI sponsored conferences, conferences presented by AAAI Affiliates, and conferences held in cooperation with AAAI.


AAAI News

AI Magazine

Spring news from the Association for the Advancement of Artificial Intelligence.


Fifteenth International Conference on Artificial Intelligence and Law (ICAIL 2015)

AI Magazine

The 15th International Conference on AI and Law (ICAIL 2015) will be held in San Diego, California, USA, June 8-12, 2015, at the University of San Diego, at the Kroc Institute, under the auspices of the International Association for Artificial Intelligence and Law (IAAIL), an organization devoted to promoting research and development in the field of AI and law with members throughout the world. The conference is held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI) and with ACM SIGAI (the Special Interest Group on Artificial Intelligence of the Association for Computing Machinery).


A Report on the Ninth International Web Rule Symposium

AI Magazine

The annual International Web Rule Symposium (RuleML) is an international conference on research, applications, languages and standards for rule technologies. RuleML is a leading conference to build bridges between academe and industry in the field of rules and its applications, especially as part of the semantic technology stack. It is devoted to rule-based programming and rule-based systems including production rules systems, logic programming rule engines, and business rule engines/business rule management systems; semantic web rule languages and rule standards; rule-based event processing languages (EPLs) and technologies; and research on inference rules, transformation rules, decision rules, production rules, and ECA rules. The 9th International Web Rule Symposium (RuleML 2015) was held in Berlin, Germany, August 2-5. This report summarizes the events of that conference.


Summary Report of The First International Competition on Computational Models of Argumentation

AI Magazine

We review the First International Competition on Computational Models of Argumentation (ICMMA’15). The competition evaluated submitted solvers performance on four different computational tasks related to solving abstract argumentation frameworks. Each task evaluated solvers in ways that pushed the edge of existing performance by introducing new challenges. Despite being the first competition in this area, the high number of competitors entered, and differences in results, suggest that the competition will help shape the landscape of ongoing developments in argumentation theory solvers.


DiversiNews: Surfacing Diversity in Online News

AI Magazine

For most events of at least moderate significance, there are likely tens, often hundreds or thousands of online articles reporting on it, each from a slightly different perspective. If we want to understand an event in depth, from multiple perspectives, we need to aggregate multiple sources and understand the relations between them. However, current news aggregators do not offer this kind of functionality. As a step towards a solution, we propose DiversiNews, a real-time news aggregation and exploration platfom whose main feature is a novel set of controls that allow users to contrast reports of a selected event based on topical emphases, sentiment differences and/or publisher geolocation. News events are presented in the form of a ranked list of articles pertaining to the event and an automatically generated summary. Both the ranking and the summary are interactive and respond in real time to user’s change of controls. We validated the concept and the user interface through user tests with positive results.


Human-Centered Design of Wearable Neuroprostheses and Exoskeletons

AI Magazine

Human-centered design of wearable robots involves the development of innovative science and technologies that minimize the mismatch between humans’ and machines’ capabilities, leading to their intuitive integration and confluent interaction. Here, we summarize our human-centered approach to the design of closed-loop brain-machine interfaces (BMI) to powered prostheses and exoskeletons that allow people to act beyond their impaired or diminished physical or sensory-motor capabilities. The goal is to develop multifunctional human-machine interfaces with integrated diagnostic, assistive and therapeutic functions. Moreover, these complex human-machine systems should be effective, reliable, safe and engaging and support the patient in performing intended actions with minimal effort and errors with adequate interaction time. To illustrate our approach, we review an example of a user-in-the-loop, patient-centered, non-invasive BMI system to a powered exoskeleton for persons with paraplegia. We conclude with a summary of challenges to the translation of these complex human-machine systems to the end-user.


What Do You Need to Know to Use a Search Engine? Why We Still Need to Teach Research Skills

AI Magazine

For the vast majority of queries (for example, navigation, simple fact lookup, and others), search engines do extremely well. Their ability to quickly provide answers to queries is a remarkable testament to the power of many of the fundamental methods of AI. They also highlight many of the issues that are common to sophisticated AI question-answering systems. It has become clear that people think of search programs in ways that are very different from traditional information sources. Rapid and ready-at-hand access, depth of processing, and the way they enable people to offload some ordinary memory tasks suggest that search engines have become more of a cognitive amplifier than a simple repository or front-end to the Internet. Like all sophisticated tools, people still need to learn how to use them. Although search engines are superb at finding and presenting information—up to and including extracting complex relations and making simple inferences—knowing how to frame questions and evaluate their results for accuracy and credibility remains an ongoing challenge. Some questions are still deep and complex, and still require knowledge on the part of the search user to work through to a successful answer. And the fact that the underlying information content, user interfaces, and capabilities are all in a continual state of change means that searchers need to continually update their knowledge of what these programs can (and cannot) do.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

Artificial intelligence (AI) research has explored a variety of problems and approaches since its inception, but for the last 20 years or so has been focused on the problems surrounding the construction of intelligent agents — systems that perceive and act in some environment. In this context, "intelligence" is related to statistical and economic notions of rationality — colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems. As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research. There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. Such considerations motivated the AAAI 2008–09 Presidential Panel on Long-Term AI Futures and other projects on AI impacts, and constitute a significant expansion of the field of AI itself, which up to now has focused largely on techniques that are neutral with respect to purpose. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. The attached research priorities document [see page X] gives many examples of such research directions that can help maximize the societal benefit of AI. This research is by necessity interdisciplinary, because it involves both society and AI. It ranges from economics, law and philosophy to computer security, formal methods and, of course, various branches of AI itself. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Human-Centered Cognitive Orthoses: Artificial Intelligence for, Rather than Instead of, the People

AI Magazine

This issue of AI Magazine includes six articles on cognitive orthoses, which we broadly conceive as technological approaches that amplify or enhance individual or team cognition across a wide range of goals and activities. The articles are grouped by how they relate to orthoses enhanced socio-technical team intelligence at three different cognitive levels—sensorimotor physical, professional learning, and networked knowledge.