Synergy and Redundancy among Brain Cells of Behaving Monkeys
Determining the relationship between the activity of a single nerve cell to that of an entire population is a fundamental question that bears on the basic neural computation paradigms. In this paper we apply an information theoretic approach to quantify the level of cooperative activity among cells in a behavioral context. It is possible to discriminate between synergetic activity of the cells vs. redundant activity, depending on the difference between the information they provide when measured jointly and the information they provide independently. We define a synergy value that is positive in the first case and negative in the second and show that the synergy value can be measured by detecting the behavioral mode of the animal from simultaneously recorded activity of the cells. We observe that among cortical cells positive synergy can be found, while cells from the basal ganglia, active during the same task, do not exhibit similar synergetic activity.
Spike-Based Compared to Rate-Based Hebbian Learning
Kempter, Richard, Gerstner, Wulfram, Hemmen, J. Leo van
For example, a'Hebbian' (Hebb 1949) learning rule which is driven by the correlations between presynaptic and postsynaptic rates may be used to generate neuronal receptive fields (e.g., Linsker 1986, MacKay and Miller 1990, Wimbauer et al. 1997) with properties similar to those of real neurons. A rate-based description, however, neglects effects which are due to the pulse structure of neuronal signals.
The Role of Lateral Cortical Competition in Ocular Dominance Development
Piepenbrock, Christian, Obermayer, Klaus
Lateral competition within a layer of neurons sharpens and localizes the response to an input stimulus. Here, we investigate a model for the activity dependent development of ocular dominance maps which allows to vary the degree of lateral competition. For weak competition, it resembles a correlation-based learning model and for strong competition, it becomes a self-organizing map. Thus, in the regime of weak competition the receptive fields are shaped by the second order statistics of the input patterns, whereas in the regime of strong competition, the higher moments and "features" of the individual patterns become important. When correlated localized stimuli from two eyes drive the cortical development we find (i) that a topographic map and binocular, localized receptive fields emerge when the degree of competition exceeds a critical value and (ii) that receptive fields exhibit eye dominance beyond a second critical value. For anti-correlated activity between the eyes, the second order statistics drive the system to develop ocular dominance even for weak competition, but no topography emerges. Topography is established only beyond a critical degree of competition.
Controlling the Complexity of HMM Systems by Regularization
Neukirchen, Christoph, Rigoll, Gerhard
This paper introduces a method for regularization ofHMM systems that avoids parameter overfitting caused by insufficient training data. Regularization is done by augmenting the EM training method by a penalty term that favors simple and smooth HMM systems. The penalty term is constructed as a mixture model of negative exponential distributions that is assumed to generate the state dependent emission probabilities of the HMMs. This new method is the successful transfer of a well known regularization approach in neural networks to the HMM domain and can be interpreted as a generalization of traditional state-tying for HMM systems. The effect of regularization is demonstrated for continuous speech recognition tasks by improving overfitted triphone models and by speaker adaptation with limited training data. 1 Introduction One general problem when constructing statistical pattern recognition systems is to ensure the capability to generalize well, i.e. the system must be able to classify data that is not contained in the training data set.
Viewing Classifier Systems as Model Free Learning in POMDPs
Hayashi, Akira, Suematsu, Nobuo
Classifier systems are now viewed disappointing because of their problems such as the rule strength vs rule set performance problem and the credit assignment problem. In order to solve the problems, we have developed a hybrid classifier system: GLS (Generalization Learning System). In designing GLS, we view CSs as model free learning in POMDPs and take a hybrid approach to finding the best generalization, given the total number of rules. GLS uses the policy improvement procedure by Jaakkola et al. for an locally optimal stochastic policy when a set of rule conditions is given. GLS uses GA to search for the best set of rule conditions. 1 INTRODUCTION Classifier systems (CSs) (Holland 1986) have been among the most used in reinforcement learning.
Multi-Electrode Spike Sorting by Clustering Transfer Functions
Rinberg, Dmitry, Davidowitz, Hanan, Tishby, Naftali
Since every electrode is in a different position it will measure a different contribution from each of the different neurons. Simply stated, the problem is this: how can these complex signals be untangled to determine when each individual cell fired? This problem is difficult because, a) the objects being classified are very similar and often noisy, b) spikes coming from the same cell can ·Permanent address: Institute of Computer Science and Center for Neural Computation, The Hebrew University, Jerusalem, Israel.
Learning Multi-Class Dynamics
Blake, Andrew, North, Ben, Isard, Michael
Yule-Walker) are available for learning Auto-Regressive process models of simple, directly observable, dynamical processes. When sensor noise means that dynamics are observed only approximately, learning can still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering. However, this does not handle more complex dynamics, involving multiple classes of motion.