Obermayer, Klaus
Similarity of Pre-trained and Fine-tuned Representations
Goerttler, Thomas, Obermayer, Klaus
However, Representation similarity analysis shows that the Oh et al. (2021) found out that, especially in the case of most significant change still occurs in the head cross-domain adaption, where the fine-tuning task does not even if all weights are updatable. However, recent come from the same distribution as in training, also an adaptation results from few-shot learning have shown that of earlier layers is very beneficial. Neyshabur et al. representation change in the early layers, which (2020) investigated what is transferred in transfer learning are mostly convolutional, is beneficial, especially by shuffling the blocks of inputs. They confirmed that lower in the case of cross-domain adaption. In our paper, layers are responsible for more general features and that a we find out whether that also holds true for transfer network with pre-trained weights stays in the same basin of learning. In addition, we analyze the change solution during fine-tuning. of representation in transfer learning, both during pre-training and fine-tuning, and find out that This paper analyses representation obtained by models having pre-trained structure is unlearned if not usable.
Exploring the Similarity of Representations in Model-Agnostic Meta-Learning
Goerttler, Thomas, Obermayer, Klaus
In past years model-agnostic meta-learning (MAML) has been one of the most promising approaches in meta-learning. It can be applied to different kinds of problems, e.g., reinforcement learning, but also shows good results on few-shot learning tasks. Besides their tremendous success in these tasks, it has still not been fully revealed yet, why it works so well. Recent work proposes that MAML rather reuses features than rapidly learns. In this paper, we want to inspire a deeper understanding of this question by analyzing MAML's representation. We apply representation similarity analysis (RSA), a well-established method in neuroscience, to the few-shot learning instantiation of MAML. Although some part of our analysis supports their general results that feature reuse is predominant, we also reveal arguments against their conclusion. The similarity-increase of layers closer to the input layers arises from the learning task itself and not from the model. In addition, the representations after inner gradient steps make a broader change to the representation than the changes during meta-training.
Training Generative Networks with general Optimal Transport distances
Laschos, Vaios, Tinapp, Jan, Obermayer, Klaus
We propose a new algorithm that uses an auxiliary Neural Network to calculate the transport distance between two data distributions and export an optimal transport map. In the sequel we use the aforementioned map to train Generative Networks. Unlike WGANs, where the Euclidean distance is implicitly used, this new method allows to use any transportation cost function that can be chosen to match the problem at hand. More specifically, it allows to use the squared distance as a transportation cost function, giving rise to the Wasserstein-2 metric for probability distributions, which has rich geometric properties that result in fast and stable gradients descends. It also allows to use image centered distances, like the Structure Similarity index, with notable differences in the results.
Non-Deterministic Policy Improvement Stabilizes Approximated Reinforcement Learning
Böhmer, Wendelin, Guo, Rong, Obermayer, Klaus
This paper investigates a type of instability that is linked to the greedy policy improvement in approximated reinforcement learning. We show empirically that non-deterministic policy improvement can stabilize methods like LSPI by controlling the improvements' stochasticity. Additionally we show that a suitable representation of the value function also stabilizes the solution to some degree. The presented approach is simple and should also be easily transferable to more sophisticated algorithms like deep reinforcement learning.
Regression with Linear Factored Functions
Böhmer, Wendelin, Obermayer, Klaus
Many applications that use empirically estimated functions face a curse of dimensionality, because the integrals over most function classes must be approximated by sampling. This paper introduces a novel regression-algorithm that learns linear factored functions (LFF). This class of functions has structural properties that allow to analytically solve certain integrals and to calculate point-wise products. Applications like belief propagation and reinforcement learning can exploit these properties to break the curse and speed up computation. We derive a regularized greedy optimization scheme, that learns factored basis functions during training. The novel regression algorithm performs competitively to Gaussian processes on benchmark tasks, and the learned LFF functions are with 4-9 factored basis functions on average very compact.
Risk-sensitive Markov control processes
Shen, Yun, Stannat, Wilhelm, Obermayer, Klaus
We introduce a general framework for measuring risk in the context of Markov control processes with risk maps on general Borel spaces that generalize known concepts of risk measures in mathematical finance, operations research and behavioral economics. Within the framework, applying weighted norm spaces to incorporate also unbounded costs, we study two types of infinite-horizon risk-sensitive criteria, discounted total risk and average risk, and solve the associated optimization problems by dynamic programming. For the discounted case, we propose a new discount scheme, which is different from the conventional form but consistent with the existing literature, while for the average risk criterion, we state Lyapunov-like stability conditions that generalize known conditions for Markov chains to ensure the existence of solutions to the optimality equation.
Learning in Riemannian Orbifolds
Jain, Brijnesh J., Obermayer, Klaus
Learning in Riemannian orbifolds is motivated by existing machine learning algorithms that directly operate on finite combinatorial structures such as point patterns, trees, and graphs. These methods, however, lack statistical justification. This contribution derives consistency results for learning problems in structured domains and thereby generalizes learning in vector spaces and manifolds.
Graph Quantization
Jain, Brijnesh J., Obermayer, Klaus
Vector quantization(VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution presents a theoretical foundation of graph quantization (GQ) that extends VQ to the domain of attributed graphs. We present the necessary Lloyd-Max conditions for optimality of a graph quantizer and consistency results for optimal GQ design based on empirical distortion measures and stochastic optimization. These results statistically justify existing clustering algorithms in the domain of graphs. The proposed approach provides a template of how to link structural pattern recognition methods other than GQ to statistical pattern recognition.
Modeling Short-term Noise Dependence of Spike Counts in Macaque Prefrontal Cortex
Onken, Arno, Grünewälder, Steffen, Munk, Matthias, Obermayer, Klaus
Correlations between spike counts are often used to analyze neural coding. The noise is typically assumed to be Gaussian. Yet, this assumption is often inappropriate, especially for low spike counts. In this study, we present copulas as an alternative approach. With copulas it is possible to use arbitrary marginal distributions such as Poisson or negative binomial that are better suited for modeling noise distributions of spike counts. Furthermore, copulas place a wide range of dependence structures at the disposal and can be used to analyze higher order interactions. We develop a framework to analyze spike count data by means of copulas. Methods for parameter inference based on maximum likelihood estimates and for computation of Shannon entropy are provided. We apply the method to our data recorded from macaque prefrontal cortex. The data analysis leads to three significant findings: (1) copula-based distributions provide better fits than discretized multivariate normal distributions; (2) negative binomial margins fit the data better than Poisson margins; and (3) a dependence model that includes only pairwise interactions overestimates the information entropy by at least 19% compared to the model with higher order interactions.
Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1
Wimmer, Klaus, Stimberg, Marcel, Martin, Robert, Schwabe, Lars, Mariño, Jorge, Schummers, James, Lyon, David C., Sur, Mriganka, Obermayer, Klaus
One major role of primary visual cortex (V1) in vision is the encoding of the orientation of lines and contours. The role of the local recurrent network in these computations is, however, still a matter of debate. To address this issue, we analyze intracellular recording data of cat V1, which combine measuring the tuning of a range of neuronal properties with a precise localization of the recording sites in the orientation preference map. For the analysis, we consider a network model of Hodgkin-Huxley type neurons arranged according to a biologically plausible two-dimensional topographic orientation preference map. We then systematically vary the strength of the recurrent excitation and inhibition relative to the strength of the afferent input. Each parametrization gives rise to a different model instance for which the tuning of model neurons at different locations of the orientation map is compared to the experimentally measured orientation tuning of membrane potential, spike output, excitatory, and inhibitory conductances. A quantitative analysis shows that the data provides strong evidence for a network model in which the afferent input is dominated by strong, balanced contributions of recurrent excitation and inhibition. This recurrent regime is close to a regime of 'instability', where strong, self-sustained activity of the network occurs. The firing rate of neurons in the best-fitting network is particularly sensitive to small modulations of model parameters, which could be one of the functional benefits of a network operating in this particular regime.