Goto

Collaborating Authors

 Rinberg, Dmitry


Data Science In Olfaction

arXiv.org Artificial Intelligence

Advances in neural sensing technology are making it possible to observe the olfactory process in great detail. In this paper, we conceptualize smell from a Data Science and AI perspective, that relates the properties of odorants to how they are sensed and analyzed in the olfactory system from the nose to the brain. Drawing distinctions to color vision, we argue that smell presents unique measurement challenges, including the complexity of stimuli, the high dimensionality of the sensory apparatus, as well as what constitutes ground truth. In the face of these challenges, we argue for the centrality of odorant-receptor interactions in developing a theory of olfaction. Such a theory is likely to find widespread industrial applications, and enhance our understanding of smell, and in the longer-term, how it relates to other senses and language. As an initial use case of the data, we present results using machine learning-based classification of neural responses to odors as they are recorded in the mouse olfactory bulb with calcium imaging.


Multi-Electrode Spike Sorting by Clustering Transfer Functions

Neural Information Processing Systems

Since every electrode is in a different position it will measure a different contribution from each of the different neurons. Simply stated, the problem is this: how can these complex signals be untangled to determine when each individual cell fired? This problem is difficult because, a) the objects being classified are very similar and often noisy, b) spikes coming from the same cell can ·Permanent address: Institute of Computer Science and Center for Neural Computation, The Hebrew University, Jerusalem, Israel.


Multi-Electrode Spike Sorting by Clustering Transfer Functions

Neural Information Processing Systems

Since every electrode is in a different position it will measure a different contribution from each of the different neurons. Simply stated, the problem is this: how can these complex signals be untangled to determine when each individual cell fired? This problem is difficult because, a) the objects being classified are very similar and often noisy, b) spikes coming from the same cell can ·Permanent address: Institute of Computer Science and Center for Neural Computation, TheHebrew University, Jerusalem, Israel.


Multi-Electrode Spike Sorting by Clustering Transfer Functions

Neural Information Processing Systems

Since every electrode is in a different position it will measure a different contribution from each of the different neurons. Simply stated, the problem is this: how can these complex signals be untangled to determine when each individual cell fired? This problem is difficult because, a) the objects being classified are very similar and often noisy, b) spikes coming from the same cell can ·Permanent address: Institute of Computer Science and Center for Neural Computation, The Hebrew University, Jerusalem, Israel.