Goto

Collaborating Authors

 Isard, Michael


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


PaLM 2 Technical Report

arXiv.org Artificial Intelligence

We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.


Continuously-adaptive discretization for message-passing algorithms

Neural Information Processing Systems

Continuously-Adaptive Discretization for Message-Passing (CAD-MP) is a new message-passing algorithm employing adaptive discretization. Most previous message-passing algorithms approximated arbitrary continuous probability distributions using either: a family of continuous distributions such as the exponential family; a particle-set of discrete samples; or a fixed, uniform discretization. In contrast, CAD-MP uses a discretization that is (i) non-uniform, and (ii) adaptive. The non-uniformity allows CAD-MP to localize interesting features (such as sharp peaks) in the marginal belief distributions with time complexity that scales logarithmically with precision, as opposed to uniform discretization which scales at best linearly. We give a principled method for altering the non-uniform discretization according to information-based measures. CAD-MP is shown in experiments on simulated data to estimate marginal beliefs much more precisely than competing approaches for the same computational expense.


Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation

Neural Information Processing Systems

The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body models. To cope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphical model where the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is impractical and the random variables in our model must be continuousvalued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter. This framework facilitates the automatic initialization of the body-model from low level cues and is robust to occlusion of body parts and scene clutter.


Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation

Neural Information Processing Systems

The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body models. Tocope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphical modelwhere the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is impractical andthe random variables in our model must be continuousvalued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter. This framework facilitates the automatic initialization of the body-model from low level cues and is robust to occlusion of body parts and scene clutter.


Learning Multi-Class Dynamics

Neural Information Processing Systems

Yule-Walker) are available for learning Auto-Regressive process models of simple, directly observable, dynamical processes. When sensor noise means that dynamics are observed only approximately, learning can still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering. However, this does not handle more complex dynamics, involving multiple classes of motion.


Learning Multi-Class Dynamics

Neural Information Processing Systems

Yule-Walker) are available for learning Auto-Regressive process models of simple, directly observable, dynamical processes.When sensor noise means that dynamics are observed only approximately, learning can still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering. However, this does not handle more complex dynamics, involving multiple classes of motion.


Learning Multi-Class Dynamics

Neural Information Processing Systems

Yule-Walker) are available for learning Auto-Regressive process models of simple, directly observable, dynamical processes. When sensor noise means that dynamics are observed only approximately, learning can still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering. However, this does not handle more complex dynamics, involving multiple classes of motion.


The CONDENSATION Algorithm - Conditional Density Propagation and Applications to Visual Tracking

Neural Information Processing Systems

The power of sampling methods in Bayesian reconstruction of noisy signals is well known. The extension of sampling to temporal problems is discussed. Efficacy of sampling over time is demonstrated with visual tracking.