Goto

Collaborating Authors

 Industry


General Control Functions for Causal Effect Estimation from Instrumental Variables

Neural Information Processing Systems

Causal effect estimation relies on separating the variation in the outcome into parts due to the treatment and due to the confounders. To achieve this separation, practitioners often use external sources of randomness that only influence the treatment called instrumental variables (IVs). We study variables constructed from treatment and IV that help estimate effects, called control functions. We characterize general control functions for effect estimation in a meta-identification result. Then, we show that structural assumptions on the treatment process allow the construction of general control functions, thereby guaranteeing identification.


Novel Upper Bounds for the Constrained Most Probable Explanation Task

Neural Information Processing Systems

We propose several schemes for upper bounding the optimal value of the constrained most probable explanation (CMPE) problem. Given a set of discrete random variables, two probabilistic graphical models defined over them and a real number q, this problem involves finding an assignment of values to all the variables such that the probability of the assignment is maximized according to the first model and is bounded by q w.r.t. the second model. In prior work, it was shown that CMPE is a unifying problem with several applications and special cases including the nearest assignment problem, the decision preserving most probable explanation task and robust estimation. It was also shown that CMPE is NP-hard even on tractable models such as bounded treewidth networks and is hard for integer linear programming methods because it includes a dense global constraint. The main idea in our approach is to simplify the problem via Lagrange relaxation and decomposition to yield either a knapsack problem or the unconstrained most probable explanation (MPE) problem, and then solving the two problems, respectively using specialized knapsack algorithms and mini-buckets based upper bounding schemes. We evaluate our proposed scheme along several dimensions including quality of the bounds and computation time required on various benchmark graphical models and how it can be used to find heuristic, near-optimal feasible solutions in an example application pertaining to robust estimation and adversarial attacks on classifiers.


A plug-and-play Transformer module for task-agnostic reasoning

Neural Information Processing Systems

Large language models (LLMs) exhibit in-context learning abilities which enable the same model to perform several tasks without any task-specific training. In contrast, traditional adaptation approaches, such as fine-tuning, modify the underlying models for each specific task. In-context learning, however, consistently underperforms task-specific tuning approaches even when presented with the same examples. While most existing approaches (e.g., prompt engineering) focus on the LLM's learned representations to patch this performance gap, our experiments actually reveal that LLM representations contain sufficient information to make good predictions. As such, we focus on the LLM's reasoning abilities and demonstrate that this performance gap exists due to their inability to perform simple probabilistic reasoning tasks. This raises an intriguing question: Are LLMs actually capable of learning how to reason in a task-agnostic manner?


Estimation of Skill Distribution from a Tournament Anuran Makur Department of CEE

Neural Information Processing Systems

In this paper, we study the problem of learning the skill distribution of a population of agents from observations of pairwise games in a tournament. These games are played among randomly drawn agents from the population. The agents in our model can be individuals, sports teams, or Wall Street fund managers. Formally, we postulate that the likelihoods of outcomes of games are governed by the parametric Bradley-Terry-Luce (or multinomial logit) model, where the probability of an agent beating another is the ratio between its skill level and the pairwise sum of skill levels, and the skill parameters are drawn from an unknown, non-parametric skill density of interest. The problem is, in essence, to learn a distribution from noisy, quantized observations.




Scale-invariant Learning by Physics Inversion

Neural Information Processing Systems

Solving inverse problems, such as parameter estimation and optimal control, is a vital part of science. Many experiments repeatedly collect data and rely on machine learning algorithms to quickly infer solutions to the associated inverse problems. We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes. The highly nonlinear behavior, common in physical processes, results in strongly varying gradients that lead first-order optimizers like SGD or Adam to compute suboptimal optimization directions. We propose a novel hybrid training approach that combines higherorder optimization methods with machine learning techniques. We take updates from a scale-invariant inverse problem solver and embed them into the gradientdescent-based learning pipeline, replacing the regular gradient of the physical process. We demonstrate the capabilities of our method on a variety of canonical physical systems, showing that it yields significant improvements on a wide range of optimization and learning problems.


Atticus Geiger, Hanson Lu

Neural Information Processing Systems

Structural analysis methods (e.g., probing and feature attribution) are increasingly important tools for neural network analysis. We propose a new structural analysis method grounded in a formal theory of causal abstraction that provides rich characterizations of model-internal representations and their roles in input/output behavior. In this method, neural representations are aligned with variables in interpretable causal models, and then interchange interventions are used to experimentally verify that the neural representations have the causal properties of their aligned variables. We apply this method in a case study to analyze neural models trained on Multiply Quantified Natural Language Inference (MQNLI) corpus, a highly complex NLI dataset that was constructed with a tree-structured natural logic causal model. We discover that a BERT-based model with state-of-the-art performance successfully realizes parts of the natural logic model's causal structure, whereas a simpler baseline model fails to show any such structure, demonstrating that BERT representations encode the compositional structure of MQNLI.


Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks

Neural Information Processing Systems

We analyze the dynamics of finite width effects in wide but finite feature learning neural networks. Starting from a dynamical mean field theory description of infinite width deep neural network kernel and prediction dynamics, we provide a characterization of the O(1/ width) fluctuations of the DMFT order parameters over random initializations of the network weights. Our results, while perturbative in width, unlike prior analyses, are non-perturbative in the strength of feature learning. In the lazy limit of network training, all kernels are random but static in time and the prediction variance has a universal form. However, in the rich, feature learning regime, the fluctuations of the kernels and predictions are dynamically coupled with a variance that can be computed self-consistently.


Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs

Neural Information Processing Systems

Deep convolutional artificial neural networks (ANNs) are the leading class of candidate models of the mechanisms of visual processing in the primate ventral stream. While initially inspired by brain anatomy, over the past years, these ANNs have evolved from a simple eight-layer architecture in AlexNet to extremely deep and branching architectures, demonstrating increasingly better object categorization performance, yet bringing into question how brain-like they still are. In particular, typical deep models from the machine learning community are often hard to map onto the brain's anatomy due to their vast number of layers and missing biologically-important connections, such as recurrence. Here we demonstrate that better anatomical alignment to the brain and high performance on machine learning as well as neuroscience measures do not have to be in contradiction. We developed CORnet-S, a shallow ANN with four anatomically mapped areas and recurrent connectivity, guided by Brain-Score, a new large-scale composite of neural and behavioral benchmarks for quantifying the functional fidelity of models of the primate ventral visual stream. Despite being significantly shallower than most models, CORnet-S is the top model on Brain-Score and outperforms similarly compact models on ImageNet. Moreover, our extensive analyses of CORnet-S circuitry variants reveal that recurrence is the main predictive factor of both Brain-Score and ImageNet top-1 performance. Finally, we report that the temporal evolution of the CORnet-S "IT" neural population resembles the actual monkey IT population dynamics. Taken together, these results establish CORnet-S, a compact, recurrent ANN, as the current best model of the primate ventral visual stream.