Learning Bayesian Networks with Low Rank Conditional Probability Tables
In this paper, we provide a method to learn the directed structure of a Bayesian network using data. The data is accessed by making conditional probability queries to a black-box model. We introduce a notion of simplicity of representation of conditional probability tables for the nodes in the Bayesian network, that we call "low rankness". We connect this notion to the Fourier transformation of real valued set functions and propose a method which learns the exact directed structure of a'low rank' Bayesian network using very few queries. We formally prove that our method correctly recovers the true directed structure, runs in polynomial time and only needs polynomial samples with respect to the number of nodes. We also provide further improvements in efficiency if we have access to some observational data.
Generating Highly Designable Proteins with Geometric Algebra Flow Matching
We introduce a generative model for protein backbone design utilizing geometric products and higher order message passing. In particular, we propose Clifford Frame Attention (CFA), an extension of the invariant point attention (IPA) architecture from AlphaFold2, in which the backbone residue frames and geometric features are represented in the projective geometric algebra. This enables to construct geometrically expressive messages between residues, including higher order terms, using the bilinear operations of the algebra. We evaluate our architecture by incorporating it into the framework of FrameFlow, a state-of-the-art flow matching model for protein backbone generation. The proposed model achieves high designability, diversity and novelty, while also sampling protein backbones that follow the statistical distribution of secondary structure elements found in naturally occurring proteins, a property so far only insufficiently achieved by many state-of-the-art generative models.
SSDiff: Spatial-spectral Integrated Diffusion Model for Remote Sensing Pansharpening
Pansharpening is a significant image fusion technique that merges the spatial content and spectral characteristics of remote sensing images to generate highresolution multispectral images. Recently, denoising diffusion probabilistic models have been gradually applied to visual tasks, enhancing controllable image generation through low-rank adaptation (LoRA). In this paper, we introduce a spatialspectral integrated diffusion model for the remote sensing pansharpening task, called SSDiff, which considers the pansharpening process as the fusion process of spatial and spectral components from the perspective of subspace decomposition. Specifically, SSDiff utilizes spatial and spectral branches to learn spatial details and spectral features separately, then employs a designed alternating projection fusion module (APFM) to accomplish the fusion. Furthermore, we propose a frequency modulation inter-branch module (FMIM) to modulate the frequency distribution between branches. The two components of SSDiff can perform favorably against the APFM when utilizing a LoRA-like branch-wise alternative fine-tuning method. It refines SSDiff to capture component-discriminating features more sufficiently. Finally, extensive experiments on four commonly used datasets, i.e., WorldView-3, WorldView-2, GaoFen-2, and QuickBird, demonstrate the superiority of SSDiff both visually and quantitatively.
Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement Benjamin Eysenbach Sergey Levine ฯฮธ
Multi-task reinforcement learning (RL) aims to simultaneously learn policies for solving many tasks. Several prior works have found that relabeling past experience with different reward functions can improve sample efficiency. Relabeling methods typically pose the question: if, in hindsight, we assume that our experience was optimal for some task, for what task was it optimal?
Kernel Instrumental Variable Regression
Rahul Singh, Maneesh Sahani, Arthur Gretton
Instrumental variable (IV) regression is a strategy for learning causal relationships in observational data. If measurements of input X and output Y are confounded, the causal relationship can nonetheless be identified if an instrumental variable Z is available that influences X directly, but is conditionally independent of Y given X and the unmeasured confounder.
Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis
Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first-cut multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA.
Entropic Causal Inference: Identifiability and Finite Sample Results
Entropic causal inference is a framework for inferring the causal direction between two categorical variables from observational data. The central assumption is that the amount of unobserved randomness in the system is not too large. This unobserved randomness is measured by the entropy of the exogenous variable in the underlying structural causal model, which governs the causal relation between the observed variables.
Semantic-Guided Multi-Attention Localization for Zero-Shot Learning
Yizhe Zhu, Jianwen Xie, Zhiqiang Tang, Xi Peng, Ahmed Elgammal
Zero-shot learning extends the conventional object classification to the unseen class recognition by introducing semantic representations of classes. Existing approaches predominantly focus on learning the proper mapping function for visual-semantic embedding, while neglecting the effect of learning discriminative visual features. In this paper, we study the significance of the discriminative region localization. We propose a semantic-guided multi-attention localization model, which automatically discovers the most discriminative parts of objects for zero-shot learning without any human annotations. Our model jointly learns cooperative global and local features from the whole object as well as the detected parts to categorize objects based on semantic descriptions. Moreover, with the joint supervision of embedding softmax loss and class-center triplet loss, the model is encouraged to learn features with high inter-class dispersion and intra-class compactness. Through comprehensive experiments on three widely used zero-shot learning benchmarks, we show the efficacy of the multi-attention localization and our proposed approach improves the state-of-the-art results by a considerable margin.
VLMimic: Vision Language Models are Visual Imitation Learner for Fine-grained Actions 1
Visual imitation learning (VIL) provides an efficient and intuitive strategy for robotic systems to acquire novel skills. Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable performance in vision and language reasoning capabilities for VIL tasks. Despite the progress, current VIL methods naively employ VLMs to learn high-level plans from human videos, relying on pre-defined motion primitives for executing physical interactions, which remains a major bottleneck. In this work, we present VLMimic, a novel paradigm that harnesses VLMs to directly learn even fine-grained action levels, only given a limited number of human videos. Specifically, VLMimic first grounds object-centric movements from human videos, and learns skills using hierarchical constraint representations, facilitating the derivation of skills with fine-grained action levels from limited human videos. These skills are refined and updated through an iterative comparison strategy, enabling efficient adaptation to unseen environments. Our extensive experiments exhibit that our VLMimic, using only 5 human videos, yields significant improvements of over 27% and 21% in RLBench and real-world manipulation tasks, and surpasses baselines by over 37% in long-horizon tasks. Code and videos are available at our home page.
Language-Driven Interactive Traffic Trajectory Generation
Realistic trajectory generation with natural language control is pivotal for advancing autonomous vehicle technology. However, previous methods focus on individual traffic participant trajectory generation, thus failing to account for the complexity of interactive traffic dynamics. In this work, we propose InteractTraj, the first language-driven traffic trajectory generator that can generate interactive traffic trajectories. InteractTraj interprets abstract trajectory descriptions into concrete formatted interaction-aware numerical codes and learns a mapping between these formatted codes and the final interactive trajectories. To interpret language descriptions, we propose a language-to-code encoder with a novel interaction-aware encoding strategy. To produce interactive traffic trajectories, we propose a codeto-trajectory decoder with interaction-aware feature aggregation that synergizes vehicle interactions with the environmental map and the vehicle moves. Extensive experiments show our method demonstrates superior performance over previous SoTA methods, offering a more realistic generation of interactive traffic trajectories with high controllability via diverse natural language commands.