Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model
Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, Wang-chun WOO
With the goal of making high-resolution forecasts of regional rainfall, precipitation nowcasting has become an important and fundamental technology underlying various public services ranging from rainstorm warnings to flight safety. Recently, the Convolutional LSTM (ConvLSTM) model has been shown to outperform traditional optical flow based methods for precipitation nowcasting, suggesting that deep learning models have a huge potential for solving the problem. However, the convolutional recurrence structure in ConvLSTM-based models is location-invariant while natural motion and transformation (e.g., rotation) are location-variant in general. Furthermore, since deep-learning-based precipitation nowcasting is a newly emerging area, clear evaluation protocols have not yet been established. To address these problems, we propose both a new model and a benchmark for precipitation nowcasting. Specifically, we go beyond ConvLSTM and propose the Trajectory GRU (TrajGRU) model that can actively learn the location-variant structure for recurrent connections. Besides, we provide a benchmark that includes a real-world large-scale dataset from the Hong Kong Observatory, a new training loss, and a comprehensive evaluation protocol to facilitate future research and gauge the state of the art.
Monte-Carlo Tree Search by Best Arm Identification
Recent advances in bandit tools and techniques for sequential learning are steadily enabling new applications and are promising the resolution of a range of challenging related problems. We study the game tree search problem, where the goal is to quickly identify the optimal move in a given game tree by sequentially sampling its stochastic payoffs. We develop new algorithms for trees of arbitrary depth, that operate by summarizing all deeper levels of the tree into confidence intervals at depth one, and applying a best arm identification procedure at the root. We prove new sample complexity guarantees with a refined dependence on the problem instance. We show experimentally that our algorithms outperform existing elimination-based algorithms and match previous special-purpose methods for depth-two trees.
Inhomogeneous Hypergraph Clustering with Applications
Hypergraph partitioning is an important problem in machine learning, computer vision and network analytics. A widely used method for hypergraph partitioning relies on minimizing a normalized sum of the costs of partitioning hyperedges across clusters. Algorithmic solutions based on this approach assume that different partitions of a hyperedge incur the same cost. However, this assumption fails to leverage the fact that different subsets of vertices within the same hyperedge may have different structural importance. We hence propose a new hypergraph clustering technique, termed inhomogeneous hypergraph partitioning, which assigns different costs to different hyperedge cuts. We prove that inhomogeneous partitioning produces a quadratic approximation to the optimal solution if the inhomogeneous costs satisfy submodularity constraints. Moreover, we demonstrate that inhomogenous partitioning offers significant performance improvements in applications such as structure learning of rankings, subspace segmentation and motif clustering.
Efficient Online Linear Optimization with Approximation Algorithms
We revisit the problem of online linear optimization in case the set of feasible actions is accessible through an approximated linear optimization oracle with a factor multiplicative approximation guarantee. This setting is in particular interesting since it captures natural online extensions of well-studied offline linear optimization problems which are NP-hard, yet admit efficient approximation algorithms. The goal here is to minimize the -regret which is the natural extension of the standard regret in online learning to this setting. We present new algorithms with significantly improved oracle complexity for both the full information and bandit variants of the problem.
Counterfactual Fairness
Matt J. Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.