Chris Russell
Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions
Chris Russell, Matteo Toso, Neill Campbell
We present a new technique for the learning of continuous energy functions that we refer to as Wibergian Learning. One common approach to inverse problems is to cast them as an energy minimisation problem, where the minimum cost solution found is used as an estimator of hidden parameters. Our new approach formally characterises the dependency between weights that control the shape of the energy function, and the location of minima, by describing minima as fixed points of optimisation methods. This allows for the use of gradient-based end-toend training to integrate deep-learning and the classical inverse problem methods. We show how our approach can be applied to obtain state-of-the-art results in the diverse applications of tracker fusion and multiview 3D reconstruction.
Counterfactual Fairness
Matt J. Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning
Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, Charles Sutton
Deep generative models provide powerful tools for distributions over complicated manifolds, such as those of natural images. But many of these methods, including generative adversarial networks (GANs), can be difficult to train, in part because they are prone to mode collapse, which means that they characterize only a few modes of the true distribution.
When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness
Chris Russell, Matt J. Kusner, Joshua Loftus, Ricardo Silva
Machine learning is now being used to make crucial decisions about people's lives. For nearly all of these decisions there is a risk that individuals of a certain race, gender, sexual orientation, or any other subpopulation are unfairly discriminated against. Our recent method has demonstrated how to use techniques from counterfactual inference to make predictions fair across different subpopulations. This method requires that one provides the causal model that generated the data at hand. In general, validating all causal implications of the model is not possible without further assumptions.
Counterfactual Fairness
Matt J. Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.