Exploring Consistency in Graph Representations: from Graph Kernels to Graph Neural Networks Qihui Yang 2
Graph Neural Networks (GNNs) have emerged as a dominant approach in graph representation learning, yet they often struggle to capture consistent similarity relationships among graphs. While graph kernel methods such as the Weisfeiler-Lehman subtree (WL-subtree) and Weisfeiler-Lehman optimal assignment (WLOA) kernels are effective in capturing similarity relationships, they rely heavily on predefined kernels and lack sufficient non-linearity for more complex data patterns. Our work aims to bridge the gap between neural network methods and kernel approaches by enabling GNNs to consistently capture relational structures in their learned representations. Given the analogy between the message-passing process of GNNs and WL algorithms, we thoroughly compare and analyze the properties of WL-subtree and WLOA kernels. We find that the similarities captured by WLOA at different iterations are asymptotically consistent, ensuring that similar graphs remain similar in subsequent iterations, thereby leading to superior performance over the WL-subtree kernel. Inspired by these findings, we conjecture that maintaining consistency in the similarities of graph representations across GNN layers is crucial for capturing relational structures and improving graph classification performance. Thus, we propose a loss to enforce the similarity of graph representations to be consistent across different layers. Our empirical analysis verifies our conjecture and shows that our proposed consistency loss can significantly enhance graph classification performance across several GNN backbones on various datasets.
Efficient Policy Evaluation Across Multiple Different Experimental Datasets
Artificial intelligence systems are trained combining various observational and experimental datasets from different source sites, and are increasingly used to reason about the effectiveness of candidate policies. One common assumption in this context is that the data in source and target sites (where the candidate policy is due to be deployed) come from the same distribution. This assumption is often violated in practice, causing challenges for generalization, transportability, or external validity. Despite recent advances for determining the identifiability of the effectiveness of policies in a target domain, there are still challenges for the accurate estimation of effects from finite samples. In this paper, we develop novel graphical criteria and estimators for evaluating the effectiveness of policies (e.g., conditional, stochastic) by combining data from multiple experimental studies. Asymptotic error analysis of our estimators provides fast convergence guarantee. We empirically verified the robustness of estimators through simulations.
Off-Dynamics Reinforcement Learning via Domain Adaptation and Reward Augmented Imitation
Training a policy in a source domain for deployment in the target domain under a dynamics shift can be challenging, often resulting in performance degradation. Previous work tackles this challenge by training on the source domain with modified rewards derived by matching distributions between the source and the target optimal trajectories. However, pure modified rewards only ensure the behavior of the learned policy in the source domain resembles trajectories produced by the target optimal policies, which does not guarantee optimal performance when the learned policy is actually deployed to the target domain. In this work, we propose to utilize imitation learning to transfer the policy learned from the reward modification to the target domain so that the new policy can generate the same trajectories in the target domain. Our approach, Domain Adaptation and Reward Augmented Imitation Learning (DARAIL), utilizes the reward modification for domain adaptation and follows the general framework of generative adversarial imitation learning from observation (GAIfO) by applying a reward augmented estimator for the policy optimization step. Theoretically, we present an error bound for our method under a mild assumption regarding the dynamics shift to justify the motivation of our method. Empirically, our method outperforms the pure modified reward method without imitation learning and also outperforms other baselines in benchmark off-dynamics environments.
Data subsampling for Poisson regression with pth-root-link
We develop and analyze data subsampling techniques for Poisson regression, the standard model for count data y N. In particular, we consider the Poisson generalized linear model with IDand square root-link functions. We consider the method of coresets, which are small weighted subsets that approximate the loss function of Poisson regression up to a factor of 1 ε. We show Ω(n) lower bounds against coresets for Poisson regression that continue to hold against arbitrary data reduction techniques up to logarithmic factors. By introducing a novel complexity parameter and a domain shifting approach, we show that sublinear coresets with 1 ε approximation guarantee exist when the complexity parameter is small. In particular, the dependence on the number of input points can be reduced to polylogarithmic. We show that the dependence on other input parameters can also be bounded sublinearly, though not always logarithmically.
Constructing Semantics-Aware Adversarial Examples with a Probabilistic Perspective
We propose a probabilistic perspective on adversarial examples, allowing us to embed subjective understanding of semantics as a distribution into the process of generating adversarial examples, in a principled manner. Despite significant pixel-level modifications compared to traditional adversarial attacks, our method preserves the overall semantics of the image, making the changes difficult for humans to detect. This extensive pixel-level modification enhances our method's ability to deceive classifiers designed to defend against adversarial attacks. Our empirical findings indicate that the proposed methods achieve higher success rates in circumventing adversarial defense mechanisms, while remaining difficult for human observers to detect. Code can be found at https://github.com/andiac/
KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters.
X-Ray: A Sequential 3D Representation For Generation
We introduce X-Ray, a novel 3D sequential representation inspired by the penetrability of x-ray scans. X-Ray transforms a 3D object into a series of surface frames at different layers, making it suitable for generating 3D models from images. Our method utilizes ray casting from the camera center to capture geometric and textured details, including depth, normal, and color, across all intersected surfaces. This process efficiently condenses the whole 3D object into a multi-frame video format, motivating the utilize of a network architecture similar to those in video diffusion models. This design ensures an efficient 3D representation by focusing solely on surface information.
IncomeSCM: From tabular dataset to time-series simulator and causal estimation benchmark
Evaluating observational estimators of causal effects demands information that is rarely available: unconfounded interventions and outcomes from the population of interest, created either by randomization or adjustment. As a result, it is customary to fall back on simulators when creating benchmark tasks. Simulators offer great control but are often too simplistic to make challenging tasks, either because they are hand-designed and lack the nuances of real-world data, or because they are fit to observational data without structural constraints. In this work, we propose a general, repeatable strategy for turning observational data into sequential structural causal models and challenging estimation tasks by following two simple principles: 1) fitting real-world data where possible, and 2) creating complexity by composing simple, hand-designed mechanisms. We implement these ideas in a highly configurable software package and apply it to the well-known Adult income data set to construct the IncomeSCM simulator. From this, we devise multiple estimation tasks and sample data sets to compare established estimators of causal effects. The tasks present a suitable challenge, with effect estimates varying greatly in quality between methods, despite similar performance in the modeling of factual outcomes, highlighting the need for dedicated causal estimators and model selection criteria.
Global Convergence of Federated Learning for Mixed Regression
This paper studies the problem of model training under Federated Learning when clients exhibit cluster structure. We contextualize this problem in mixed regression, where each client has limited local data generated from one of k unknown regression models. We design an algorithm that achieves global convergence from any initialization, and works even when local data volume is highly unbalanced - there could exist clients that contain O(1) data points only. Our algorithm first runs moment descent on a few anchor clients (each with Ω(k) data points) to obtain coarse model estimates. Then each client alternately estimates its cluster labels and refines the model estimates based on FedAvg or FedProx. A key innovation in our analysis is a uniform estimate on the clustering errors, which we prove by bounding the VC dimension of general polynomial concept classes based on the theory of algebraic geometry.