Quantitative Convergences of Lie Group Momentum Optimizers
Explicit, momentum-based dynamics that optimize functions defined on Lie groups can be constructed via variational optimization and momentum trivialization. Structure preserving time discretizations can then turn this dynamics into optimization algorithms. This article investigates two types of discretization, Lie Heavy-Ball, which is a known splitting scheme, and Lie NAG-SC, which is newly proposed. Their convergence rates are explicitly quantified under L-smoothness and local strong convexity assumptions. Lie NAG-SC provides acceleration over the momentumless case, i.e. Riemannian gradient descent, but Lie Heavy-Ball does not. When compared to existing accelerated optimizers for general manifolds, both Lie Heavy-Ball and Lie NAG-SC are computationally cheaper and easier to implement, thanks to their utilization of group structure. Only gradient oracle and exponential map are required, but not logarithm map or parallel transport which are computational costly.
Model Sparsity Can Simplify Machine Unlearning
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process.
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs Julia Gastinger 1,2,6 Shenyang Huang 1,4 Mikhail Galkin 3
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entities over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark.
c5ec22711f3a4a2f4a0a8ffd92167190-Paper-Conference.pdf
In most social choice settings, the participating agents express their preferences over the different alternatives in the form of linear orderings. While this clearly simplifies preference elicitation, it inevitably leads to poor performance with respect to optimizing a cardinal objective, such as the social welfare, since the values of the agents remain virtually unknown. This loss in performance because of lack of information is measured by the notion of distortion. A recent array of works put forward the agenda of designing mechanisms that learn the values of the agents for a small number of alternatives via queries, and use this limited extra information to make better-informed decisions, thus improving distortion. Following this agenda, in this work we focus on a class of combinatorial problems that includes most well-known matching problems and several of their generalizations, such as One-Sided Matching, Two-Sided Matching, General Graph Matching, and k-Constrained Resource Allocation. We design two-query mechanisms that achieve the best-possible worst-case distortion in terms of social welfare, and outperform the best-possible expected distortion achieved by randomized ordinal mechanisms.
Rapid Plug-in Defenders
In the realm of daily services, the deployment of deep neural networks underscores the paramount importance of their reliability. However, the vulnerability of these networks to adversarial attacks, primarily evasion-based, poses a concerning threat to their functionality. Common methods for enhancing robustness involve heavy adversarial training or leveraging learned knowledge from clean data, both necessitating substantial computational resources. This inherent time-intensive nature severely limits the agility of large foundational models to swiftly counter adversarial perturbations. To address this challenge, this paper focuses on the Rapid Plug-in Defender (RaPiD) problem, aiming to rapidly counter adversarial perturbations without altering the deployed model. Drawing inspiration from the generalization and the universal computation ability of pre-trained transformer models, we propose a novel method termed CeTaD (Considering Pre-trained Transformers as Defenders) for RaPiD, optimized for efficient computation. CeTaD strategically fine-tunes the normalization layer parameters within the defender using a limited set of clean and adversarial examples.
Boosting the Performance of Generic Deep Neural Network Frameworks with Log-supermodular CRFs
Historically, conditional random fields (CRFs) were popular tools in a variety of application areas from computer vision to natural language processing, but due to their higher computational cost and weaker practical performance, they have, in many situations, fallen out of favor and been replaced by end-to-end deep neural network (DNN) solutions. More recently, combined DNN-CRF approaches have been considered, but their speed and practical performance still falls short of the best performing pure DNN solutions. In this work, we present a generic combined approach in which a log-supermodular CRF acts as a regularizer to encourage similarity between outputs in a structured prediction task. We show that this combined approach is widely applicable, practical (it incurs only a moderate overhead on top of the base DNN solution) and, in some cases, it can rival carefully engineered pure DNN solutions for the same structured prediction task.
LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS
Recent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15 compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.
Speaking Your Language: Spatial Relationships in Interpretable Emergent Communication Olaf Lipinski Adam J. Sobey 2,1 Federico Cerutti 3 Timothy J. Norman
Effective communication requires the ability to refer to specific parts of an observation in relation to others. While emergent communication literature shows success in developing various language properties, no research has shown the emergence of such positional references. This paper demonstrates how agents can communicate about spatial relationships within their observations. The results indicate that agents can develop a language capable of expressing the relationships between parts of their observation, achieving over 90% accuracy when trained in a referential game which requires such communication. Using a collocation measure, we demonstrate how the agents create such references. This analysis suggests that agents use a mixture of non-compositional and compositional messages to convey spatial relationships. We also show that the emergent language is interpretable by humans. The translation accuracy is tested by communicating with the receiver agent, where the receiver achieves over 78% accuracy using parts of this lexicon, confirming that the interpretation of the emergent language was successful.