Goto

Collaborating Authors

Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control

Neural Information Processing Systems

Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs. Such capabilities are difficult to learn solely from task-specific data. This has led to the emergence of pre-trained vision-language models as a tool for transferring representations learned from internet-scale data to downstream tasks and new domains. However, commonly used contrastively trained representations such as in CLIP have been shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene understanding-- a capability vital for control. To address this shortcoming, we consider representations from pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts and as such, contain text-conditioned representations that reflect highly fine-grained visuo-spatial information. Using pre-trained text-to-image diffusion models, we construct Stable Control Representations which allow learning downstream control policies that generalize to complex, open-ended environments. We show that policies learned using Stable Control Representations are competitive with state-of-the-art representation learning approaches across a broad range of simulated control settings, encompassing challenging manipulation and navigation tasks. Most notably, we show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.


Curriculum Learning with Infant Egocentric Videos

Neural Information Processing Systems

Infants possess a remarkable ability to rapidly learn and process visual inputs. As an infant's mobility increases, so does the variety and dynamics of their visual inputs. Is this change in the properties of the visual inputs beneficial or even critical for the proper development of the visual system? To address this question, we used video recordings from infants wearing head-mounted cameras to train a variety of self-supervised learning models. Critically, we separated the infant data by age group and evaluated the importance of training with a curriculum aligned with developmental order. We found that initiating learning with the data from the youngest age group provided the strongest learning signal and led to the best learning outcomes in terms of downstream task performance. We then showed that the benefits of the data from the youngest age group are due to the slowness and simplicity of the visual experience. The results provide strong empirical evidence for the importance of the properties of the early infant experience and developmental progression in training. More broadly, our approach and findings take a noteworthy step towards reverse engineering the learning mechanisms in newborn brains using image-computable models from artificial intelligence.


04115ec378e476c56d19d827bcf8db56-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for the feedback and will address their concerns in the following. Define S:= {f X: ฮ›(f) C} and assume that S is compact in the -closure of R(P). Direct computation establishes the claim. Now inverse stability is necessary (see Example A.1 in the paper) and sufficient (see Prop. 1.2 in the paper) in order to We would like to highlight the following additional merit of the study of degenerate parametrizations. Theorem 3.1 in the paper more palatable we will link them to practical methods of regularization.


Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-shot Forecasting of Multivariate Time Series

Neural Information Processing Systems

Large pre-trained models excel in zero/few-shot learning for language and vision tasks but face challenges in multivariate time series (TS) forecasting due to diverse data characteristics. Consequently, recent research efforts have focused on developing pre-trained TS forecasting models. These models, whether built from scratch or adapted from large language models (LLMs), excel in zero/few-shot forecasting tasks. However, they are limited by slow performance, high computational demands, and neglect of cross-channel and exogenous correlations. To address this, we introduce Tiny Time Mixers (TTM), a compact model (starting from 1M parameters) with effective transfer learning capabilities, trained exclusively on public TS datasets. TTM, based on the light-weight TSMixer architecture, incorporates innovations like adaptive patching, diverse resolution sampling, and resolution prefix tuning to handle pre-training on varied dataset resolutions with minimal model capacity. Additionally, it employs multi-level modeling to capture channel correlations and infuse exogenous signals during fine-tuning. TTM outperforms existing popular benchmarks in zero/few-shot forecasting by (4-40%), while reducing computational requirements significantly. Moreover, TTMs are lightweight and can be executed even on CPU-only machines, enhancing usability and fostering wider adoption in resource-constrained environments.


Membership Inference on Text-to-image Diffusion Models via Conditional Likelihood Discrepancy

Neural Information Processing Systems

Membership inference arises in these contexts as a potential auditing method for detecting unauthorized data usage. While some efforts have been made on diffusion models, they are not applicable to text-to-image diffusion models due to the high computation overhead and enhanced generalization capabilities. In this paper, we first identify a conditional overfitting phenomenon in text-to-image diffusion models, indicating that these models tend to overfit the conditional distribution of images given the corresponding text rather than the marginal distribution of images only. Based on this observation, we derive an analytical indicator, namely Conditional Likelihood Discrepancy (CLiD), to perform membership inference, which reduces the stochasticity in estimating memorization of individual samples. Experimental results demonstrate that our method significantly outperforms previous methods across various data distributions and dataset scales. Additionally, our method shows superior resistance to overfitting mitigation strategies, such as early stopping and data augmentation.


Task-aware world model learning with meta weighting via bi-level optimization

Neural Information Processing Systems

Aligning the world model with the environment for the agent's specific task is crucial in model-based reinforcement learning. While value-equivalent models may achieve better task awareness than maximum-likelihood models, they sacrifice a large amount of semantic information and face implementation issues. To combine the benefits of both types of models, we propose Task-aware Environment Modeling Pipeline with bi-level Optimization (TEMPO), a bi-level model learning framework that introduces an additional level of optimization on top of a maximum-likelihood model by incorporating a meta weighter network that weights each training sample. The meta weighter in the upper level learns to generate novel sample weights by minimizing a proposed task-aware model loss. The model in the lower level focuses on important samples while maintaining rich semantic information in state representations. We evaluate TEMPO on a variety of continuous and discrete control tasks from the DeepMind Control Suite and Atari video games. Our results demonstrate that TEMPO achieves state-of-the-art performance regarding asymptotic performance, training stability, and convergence speed.


Flattening a Hierarchical Clustering through Active Learning

Neural Information Processing Systems

We investigate active learning by pairwise similarity over the leaves of trees originating from hierarchical clustering procedures. In the realizable setting, we provide a full characterization of the number of queries needed to achieve perfect reconstruction of the tree cut. In the non-realizable setting, we rely on known important-sampling procedures to obtain regret and query complexity bounds. Our algorithms come with theoretical guarantees on the statistical error and, more importantly, lend themselves to linear-time implementations in the relevant parameters of the problem. We discuss such implementations, prove running time guarantees for them, and present preliminary experiments on real-world datasets showing the compelling practical performance of our algorithms as compared to both passive learning and simple active learning baselines.


Scattering Vision Transformer: Spectral Mixing Matters-Supplementary

Neural Information Processing Systems

This document provides a comprehensive analysis of the vanilla transformer architecture and explores various versions The architecture comparisons are presented in Table-4, shedding light on the differences and capabilities of each version. The document also delves into the training configurations, encompassing transfer learning, task learning, and fine-tuning tasks. The dataset information utilized for transformer learning is presented in Table-5, providing insights into dataset sizes, and relevance to different applications. Moving to the results section, we showcase the fine-tuned model outcomes, where models are initially trained on 224 x 224 images and subsequently fine-tuned on 384 x 384 images. The performance evaluation, as depicted in Table-6, encompasses accuracy metrics, number of parameters(M), and Floating point operations(G). The detailed comparison of similar architectures is provided in Table-3. Regarding the trade-off between invertibility and redundancy, we conducted an experiment to demonstrate that invertibility aids in comprehending the image rather than merely contributing to performance, as shown in Table-2.


Scattering Vision Transformer: Spectral Mixing Matters

Neural Information Processing Systems

Vision transformers have gained significant attention and achieved state-of-theart performance in various computer vision tasks, including image classification, instance segmentation, and object detection. However, challenges remain in addressing attention complexity and effectively capturing fine-grained information within images. Existing solutions often resort to down-sampling operations, such as pooling, to reduce computational cost. Unfortunately, such operations are non-invertible and can result in information loss. In this paper, we present a novel approach called Scattering Vision Transformer (SVT) to tackle these challenges. SVT incorporates a spectrally scattering network that enables the capture of intricate image details. SVT overcomes the invertibility issue associated with down-sampling operations by separating low-frequency and high-frequency components. Furthermore, SVT introduces a unique spectral gating network utilizing Einstein multiplication for token and channel mixing, effectively reducing complexity. We show that SVT achieves state-of-the-art performance on the ImageNet dataset with a significant reduction in a number of parameters and FLOPS.


Efficient Lifelong Model Evaluation in an Era of Rapid Progress Philip H.S. Torr 3 Matthias Bethge

Neural Information Processing Systems

Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling everexpanding large-scale benchmarks called Lifelong Benchmarks. These benchmarks introduce a major challenge: the high cost of evaluating a growing number of models across very large sample sets. To address this challenge, we introduce an efficient framework for model evaluation, Sort & Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples. To test our approach at scale, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing 1.69M and 1.98M test samples for classification. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours ( 1000x reduction) on a single A100 GPU, with low approximation error and memory cost of <100MB. Our work also highlights issues with current accuracy prediction metrics, suggesting a need to move towards sample-level evaluation metrics. We hope to guide future research by showing our method's bottleneck lies primarily in generalizing Sort beyond a single rank order and not in improving Search.