Goto

Collaborating Authors

Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated

Neural Information Processing Systems

Given a matrix of observed data, Principal Components Analysis (PCA) computes a small number of orthogonal directions that contain most of its variability. Provably accurate solutions for PCA have been in use for a long time. However, to the best of our knowledge, all existing theoretical guarantees for it assume that the data and the corrupting noise are mutually independent, or at least uncorrelated. This is valid in practice often, but not always. In this paper, we study the PCA problem in the setting where the data and noise can be correlated. Such noise is often also referred to as "data-dependent noise". We obtain a correctness result for the standard eigenvalue decomposition (EVD) based solution to PCA under simple assumptions on the data-noise correlation. We also develop and analyze a generalization of EVD, cluster-EVD, that improves upon EVD in certain regimes.


Get Rid of Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework Zhongchao Yi

Neural Information Processing Systems

Spatiotemporal learning has become a pivotal technique to enable urban intelligence. Traditional spatiotemporal models mostly focus on a specific task by assuming a same distribution between training and testing sets. However, given that urban systems are usually dynamic, multi-sourced with imbalanced data distributions, current specific task-specific models fail to generalize to new urban conditions and adapt to new domains without explicitly modeling interdependencies across various dimensions and types of urban data. To this end, we argue that there is an essential to propose a Continuous Multi-task Spatio-Temporal learning framework (CMuST) to empower collective urban intelligence, which reforms the urban spatiotemporal learning from single-domain to cooperatively multi-dimensional and multi-task learning. Specifically, CMuST proposes a new multi-dimensional spatiotemporal interaction network (MSTI) to allow cross-interactions between context and main observations as well as self-interactions within spatial and temporal aspects to be exposed, which is also the core for capturing task-level commonality and personalization. To ensure continuous task learning, a novel Rolling Adaptation training scheme (RoAda) is devised, which not only preserves task uniqueness by constructing data summarization-driven task prompts, but also harnesses correlated patterns among tasks by iterative model behavior modeling. We further establish a benchmark of three cities for multi-task spatiotemporal learning, and empirically demonstrate the superiority of CMuST via extensive evaluations on these datasets. The impressive improvements on both few-shot streaming data and new domain tasks against existing SOAT methods are achieved.


Zero-shot Generalizable Incremental Learning for Vision-Language Object Detection

Neural Information Processing Systems

This paper presents Incremental Vision-Language Object Detection (IVLOD), a novel learning task designed to incrementally adapt pre-trained Vision-Language Object Detection Models (VLODMs) to various specialized domains, while simultaneously preserving their zero-shot generalization capabilities for the generalized domain. To address this new challenge, we present the Zero-interference Reparameterizable Adaptation (ZiRa), a novel method that introduces Zero-interference Loss and reparameterization techniques to tackle IVLOD without incurring a significant increase in memory usage. Comprehensive experiments on COCO and ODinW-13 datasets demonstrate that ZiRa effectively safeguards the zeroshot generalization ability of VLODMs while continuously adapting to new tasks. Specifically, after training on ODinW-13 datasets, ZiRa exhibits superior performance compared to CL-DETR and iDETR, boosting zero-shot generalizability by substantial 13.91 and 8.74 AP, respectively.


Gaussian Processes for Survival Analysis

Neural Information Processing Systems

We introduce a semi-parametric Bayesian model for survival analysis. The model is centred on a parametric baseline hazard, and uses a Gaussian process to model variations away from it nonparametrically, as well as dependence on covariates. As opposed to many other methods in survival analysis, our framework does not impose unnecessary constraints in the hazard rate or in the survival function. Furthermore, our model handles left, right and interval censoring mechanisms common in survival analysis. We propose a MCMC algorithm to perform inference and an approximation scheme based on random Fourier features to make computations faster. We report experimental results on synthetic and real data, showing that our model performs better than competing models such as Cox proportional hazards, ANOVA-DDP and random survival forests.


Improving Generalization in Federated Learning with Model-Data Mutual Information Regularization: A Posterior Inference Approach

Neural Information Processing Systems

Most of existing federated learning (FL) formulation is treated as a point-estimate of models, inherently prone to overfitting on scarce client-side data with overconfident decisions. Though Bayesian inference can alleviate this issue, a direct posterior inference at clients may result in biased local posterior estimates due to data heterogeneity, leading to a sub-optimal global posterior. From an information-theoretic perspective, we propose FedMDMI, a federated posterior inference framework based on model-data mutual information (MI). Specifically, a global model-data MI term is introduced as regularization to enforce the global model to learn essential information from the heterogeneous local data, alleviating the bias caused by data heterogeneity and hence enhancing generalization. To make this global MI tractable, we decompose it into local MI terms at the clients, converting the global objective with MI regularization into several locally optimizable objectives based on local data. For these local objectives, we further show that the optimal local posterior is a Gibbs posterior, which can be efficiently sampled with stochastic gradient Langevin dynamics methods.



SELECT: A Large-Scale Benchmark of Data Curation Strategies for Image Classification Benjamin Feuer

Neural Information Processing Systems

Data curation is the problem of how to collect and organize samples into a dataset that supports efficient learning. Despite the centrality of the task, little work has been devoted towards a large-scale, systematic comparison of various curation methods.


Disentangling factors of variation in deep representation using adversarial training

Neural Information Processing Systems

We introduce a conditional generative model for learning to disentangle the hidden factors of variation within a set of labeled observations, and separate them into complementary codes. One code summarizes the specified factors of variation associated with the labels.


Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models

Neural Information Processing Systems

Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using "prompt-specific methods" to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the promptagnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of PAP in comparison to existing techniques. Our code will be available at https://github.com/vancyland/PAP.


AdaPKC: PeakConv with Adaptive Peak Receptive Field for Radar Semantic Segmentation Teng Li2

Neural Information Processing Systems

Deep learning-based radar detection technology is receiving increasing attention in areas such as autonomous driving, UAV surveillance, and marine monitoring. Among recent efforts, PeakConv (PKC) provides a solution that can retain the peak response characteristics of radar signals and play the characteristics of deep convolution, thereby improving the effect of radar semantic segmentation (RSS). However, due to the use of a pre-set fixed peak receptive field sampling rule, PKC still has limitations in dealing with problems such as inconsistency of target frequency domain response broadening, non-homogeneous and time-varying characteristic of noise/clutter distribution. Therefore, this paper proposes an idea of adaptive peak receptive field, and upgrades PKC to AdaPKC based on this idea. Beyond that, a novel fine-tuning technology to further boost the performance of AdaPKC-based RSS networks is presented. Through experimental verification using various real-measured radar data (including publicly available low-cost millimeter-wave radar dataset for autonomous driving and self-collected Ku-band surveillance radar dataset), we found that the performance of AdaPKC-based models surpasses other SoTA methods in RSS tasks.