Goto

Collaborating Authors


4d95d05a4fc4eadbc3b9dde67afdca39-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for the detailed feedback! "[on] choosing the order of the model" + Reviewer 2's "[what is a] systematic way for the practitioners to understand This structural prior can be encoded in the order of the CGA. "time and space complexities" -- The time to compute the SV is the space complexity of the CGA model: the number of The complexity of learning a CGA depends on the training method employed to learn ห†v (e.g. "What happens if we increase the team size to a reasonable value such as 100 players? Does the proposed method scale " Note that we considered doing this larger-scale experiment, but were limited by the speed of current MARL methods. "[How are] results proposed in this paper are related to existing work" + Reviewer 4's "missing some important '04 (the '06 paper focuses on the core); Shoham et al (already cited).


Random Shuffling Beats SGD Only After Many Epochs on Ill-Conditioned Problems

Neural Information Processing Systems

Recently, there has been much interest in studying the convergence rates of withoutreplacement SGD, and proving that it is faster than with-replacement SGD in the worst case. However, known lower bounds ignore the problem's geometry, including its condition number, whereas the upper bounds explicitly depend on it. Perhaps surprisingly, we prove that when the condition number is taken into account, without-replacement SGD does not significantly improve on withreplacement SGD in terms of worst-case bounds, unless the number of epochs (passes over the data) is larger than the condition number. Since many problems in machine learning and other areas are both ill-conditioned and involve large datasets, this indicates that without-replacement does not necessarily improve over with-replacement sampling for realistic iteration budgets. We show this by providing new lower and upper bounds which are tight (up to log factors), for quadratic problems with commuting quadratic terms, precisely quantifying the dependence on the problem parameters.


Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction Manuel Brenner

Neural Information Processing Systems

Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and Rรถssler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems.


Parameter-free Regret in High Probability with Heavy Tails

Neural Information Processing Systems

We present new algorithms for online convex optimization over unbounded domains that obtain parameter-free regret in high-probability given access only to potentially heavy-tailed subgradient estimates. Previous work in unbounded domains considers only in-expectation results for sub-exponential subgradients. Unlike in the bounded domain case, we cannot rely on straight-forward martingale concentration due to exponentially large iterates produced by the algorithm. We develop new regularization techniques to overcome these problems.


Parameter-free Regret in High Probability with Heavy Tails

Neural Information Processing Systems

We present new algorithms for online convex optimization over unbounded domains that obtain parameter-free regret in high-probability given access only to potentially heavy-tailed subgradient estimates. Previous work in unbounded domains considers only in-expectation results for sub-exponential subgradients. Unlike in the bounded domain case, we cannot rely on straight-forward martingale concentration due to exponentially large iterates produced by the algorithm. We develop new regularization techniques to overcome these problems.


MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens Anas Awadalla 1,2 Le Xue 2 Oscar Lo1

Neural Information Processing Systems

Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises of one trillion text tokens and 3.4 billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS.




Distributed Distributionally Robust Optimization with Non-Convex Objectives

Neural Information Processing Systems

Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the distributed distributionally robust optimization (DDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.