Goto

Collaborating Authors


A Proof of Theorem 1 N K M K

Neural Information Processing Systems

The readout is a 3-layer MLP with units [64, 64, 32], ELU activations, and dropout 0.5. The pooling ratio is set to 0.5 for EdgePool and Cmp-Graclus. Table 2 reports the information about the datasets used in the experimental evaluation. B.1, including the pooling ratio of 0.1 (except for Graclus and EdgePool, where is 0.5), as the goal is Table 5: Average run-time in seconds per epoch (first row) and average classification accuracy (second row) achieved by the different pooling methods on the benchmark datasets.


The expressive power of pooling in Graph Neural Networks

Neural Information Processing Systems

In Graph Neural Networks (GNNs), hierarchical pooling operators generate local summaries of the data by coarsening the graph structure and the vertex features. While considerable attention has been devoted to analyzing the expressive power of message-passing (MP) layers in GNNs, a study on how graph pooling affects the expressiveness of a GNN is still lacking. Additionally, despite the recent advances in the design of pooling operators, there is not a principled criterion to compare them. In this work, we derive sufficient conditions for a pooling operator to fully preserve the expressive power of the MP layers before it. These conditions serve as a universal and theoretically grounded criterion for choosing among existing pooling operators or designing new ones. Based on our theoretical findings, we analyze several existing pooling operators and identify those that fail to satisfy the expressiveness conditions. Finally, we introduce an experimental setup to verify empirically the expressive power of a GNN equipped with pooling layers, in terms of its capability to perform a graph isomorphism test.




Holistic Evaluation of Text-to-Image Models Tony Lee 1 Yifan Mai

Neural Information Processing Systems

The stunning qualitative improvement of text-to-image models has led to their widespread attention and adoption. However, we lack a comprehensive quantitative understanding of their capabilities and risks. To fill this gap, we introduce a new benchmark, Holistic Evaluation of Text-to-Image Models (HEIM). Whereas previous evaluations focus mostly on image-text alignment and image quality, we identify 12 aspects, including text-image alignment, image quality, aesthetics, originality, reasoning, knowledge, bias, toxicity, fairness, robustness, multilinguality, and efficiency. We curate 62 scenarios encompassing these aspects and evaluate 26 state-of-the-art text-to-image models on this benchmark. Our results reveal that no single model excels in all aspects, with different models demonstrating different strengths. We release the generated images and human evaluation results for full transparency at https://crfm.stanford.edu/heim/latest




Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations Zhong Yi Wan Google Research James Lottes Google Research Yi-fan Chen Google Research

Neural Information Processing Systems

We introduce a data-driven learning framework that assimilates two powerful ideas: ideal large eddy simulation (LES) from turbulence closure modeling and neural stochastic differential equations (SDE) for stochastic modeling. The ideal LES models the LES flow by treating each full-order trajectory as a random realization of the underlying dynamics, as such, the effect of small-scales is marginalized to obtain the deterministic evolution of the LES state. However, ideal LES is analytically intractable. In our work, we use a latent neural SDE to model the evolution of the stochastic process and an encoder-decoder pair for transforming between the latent space and the desired ideal flow field. This stands in sharp contrast to other types of neural parameterization of closure models where each trajectory is treated as a deterministic realization of the dynamics. We show the effectiveness of our approach (niLES - neural ideal LES) on two challenging chaotic dynamical systems: Kolmogorov flow at a Reynolds number of 20,000 and flow past a cylinder at Reynolds number 500. Compared to competing methods, our method can handle non-uniform geometries using unstructured meshes seamlessly. In particular, niLES leads to trajectories with more accurate statistics and enhances stability, particularly for long-horizon rollouts.


Bayesian nonparametric (non-)renewal processes for analyzing neural spike train variability

Neural Information Processing Systems

Neural spiking activity is generally variable, non-stationary, and exhibits complex dependencies on covariates, such as sensory input or behavior. These dependencies have been proposed to be signatures of specific computations, and so characterizing them with quantitative rigor is critical for understanding neural computations. Approaches based on point processes provide a principled statistical framework for modeling neural spiking activity. However, currently, they only allow the instantaneous mean, but not the instantaneous variability, of responses to depend on covariates. To resolve this limitation, we propose a scalable Bayesian approach generalizing modulated renewal processes using sparse variational Gaussian processes. We leverage pathwise conditioning for computing nonparametric priors over conditional interspike interval distributions and rely on automatic relevance determination to detect lagging interspike interval dependencies beyond renewal order. After systematically validating our method on synthetic data, we apply it to two foundational datasets of animal navigation: head direction cells in freely moving mice and hippocampal place cells in rats running along a linear track. Our model exhibits competitive or better predictive power compared to state-of-the-art baselines, and outperforms them in terms of capturing interspike interval statistics. These results confirm the importance of modeling covariate-dependent spiking variability, and further analyses of our fitted models reveal rich patterns of variability modulation beyond the temporal resolution of flexible count-based approaches.