Variance Reduction in Stochastic Gradient Langevin Dynamics
Kumar Avinava Dubey, Sashank J. Reddi, Sinead A. Williamson, Barnabas Poczos, Alexander J. Smola, Eric P. Xing
Stochastic gradient-based Monte Carlo methods such as stochastic gradient Langevin dynamics are useful tools for posterior inference on large scale datasets in many machine learning applications. These methods scale to large datasets by using noisy gradients calculated using a mini-batch or subset of the dataset. However, the high variance inherent in these noisy gradients degrades performance and leads to slower mixing. In this paper, we present techniques for reducing variance in stochastic gradient Langevin dynamics, yielding novel stochastic Monte Carlo methods that improve performance by reducing the variance in the stochastic gradient. We show that our proposed method has better theoretical guarantees on convergence rate than stochastic Langevin dynamics. This is complemented by impressive empirical results obtained on a variety of real world datasets, and on four different machine learning tasks (regression, classification, independent component analysis and mixture modeling). These theoretical and empirical contributions combine to make a compelling case for using variance reduction in stochastic Monte Carlo methods.
User-Creator Feature Polarization in Recommender Systems with Dual Influence
Recommender systems serve the dual purpose of presenting relevant content to users and helping content creators reach their target audience. The dual nature of these systems naturally influences both users and creators: users' preferences are affected by the items they are recommended, while creators may be incentivized to alter their content to attract more users. We define a model, called user-creator feature dynamics, to capture the dual influence of recommender systems. We prove that a recommender system with dual influence is guaranteed to polarize, causing diversity loss in the system. We then investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems. Unexpectedly, we find that common diversity-promoting approaches do not work in the presence of dual influence, while relevancy-optimizing methods like top-k truncation can prevent polarization and improve diversity of the system.
From Text to Trajectory: Exploring Complex Constraint Representation and Decomposition in Safe Reinforcement Learning
Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.
VeXKD: The Versatile Integration of Cross-Modal Fusion and Knowledge Distillation for 3D Perception
Recent advancements in 3D perception have led to a proliferation of network architectures, particularly those involving multi-modal fusion algorithms. While these fusion algorithms improve accuracy, their complexity often impedes real-time performance. This paper introduces VeXKD, an effective and Versatile framework that integrates Cross-Modal Fusion with Knowledge Distillation. VeXKD applies knowledge distillation exclusively to the Bird's Eye View (BEV) feature maps, enabling the transfer of cross-modal insights to single-modal students without additional inference time overhead. It avoids volatile components that can vary across various 3D perception tasks and student modalities, thus improving versatility. The framework adopts a modality-general cross-modal fusion module to bridge the modality gap between the multi-modal teachers and single-modal students. Furthermore, leveraging byproducts generated during fusion, our BEV query guided mask generation network identifies crucial spatial locations across different BEV feature maps from different tasks and semantic levels in a datadriven manner, significantly enhancing the effectiveness of knowledge distillation. Extensive experiments on the nuScenes dataset demonstrate notable improvements, with up to 6.9%/4.2%
Reconstruct and Match: Out-of-Distribution Robustness via Topological Homogeneity Chaoqi Chen 1 Luyao Tang 2 Hui Huang College of Computer Science and Software Engineering, Shenzhen University
Since deep learning models are usually deployed in non-stationary environments, it is imperative to improve their robustness to out-of-distribution (OOD) data. A common approach to mitigate distribution shift is to regularize internal representations or predictors learned from in-distribution (ID) data to be domain invariant. Past studies have primarily learned pairwise invariances, ignoring the intrinsic structure and high-order dependencies of the data. Unlike machines, humans recognize objects by first dividing them into major components and then identifying the topological relation of these components. Motivated by this, we propose Reconstruct and Match (REMA), a general learning framework for object recognition tasks to endow deep models with the capability of capturing the topological homogeneity of objects without human prior knowledge or fine-grained annotations. To identify major components from objects, REMA introduces a selective slotbased reconstruction module to dynamically map dense pixels into a sparse and discrete set of slot vectors in an unsupervised manner. Then, to model high-order dependencies among these components, we propose a hypergraph-based relational reasoning module that models the intricate relations of nodes (slots) with structural constraints. Experiments on standard benchmarks show that REMA outperforms state-of-the-art methods in OOD generalization and test-time adaptation settings.
Federated Online Prediction from Experts with Differential Privacy: Separations and Regret Speed-ups
We study the problems of differentially private federated online prediction from experts against both stochastic adversaries and oblivious adversaries. We aim to minimize the average regret on m clients working in parallel over time horizon T with explicit differential privacy (DP) guarantees. With stochastic adversaries, we propose a Fed-DP-OPE-Stoch algorithm that achieves m-fold speed-up of the per-client regret compared to the single-player counterparts under both pure DP and approximate DP constraints, while maintaining logarithmic communication costs. With oblivious adversaries, we establish non-trivial lower bounds indicating that collaboration among clients does not lead to regret speed-up with general oblivious adversaries. We then consider a special case of the oblivious adversaries setting, where there exists a low-loss expert. We design a new algorithm Fed-SVT and show that it achieves an m-fold regret speed-up under both pure DP and approximate DP constraints over the single-player counterparts. Our lower bound indicates that Fed-SVT is nearly optimal up to logarithmic factors. Experiments demonstrate the effectiveness of our proposed algorithms. To the best of our knowledge, this is the first work examining the differentially private online prediction from experts in the federated setting.
IMPACT: A Large-scale Integrated Multimodal Patent Analysis and Creation Dataset for Design Patents
Our dataset includes half a million design patents comprising 3.61 million figures along with captions from patents granted by the United States Patent and Trademark Office (USPTO) over a 16-year period from 2007 to 2022. We incorporate the metadata of each patent application with elaborate captions that are coherent with multiple viewpoints of designs. Even though patents themselves contain a variety of design figures, titles, and descriptions of viewpoints, we find that they lack detailed descriptions that are necessary to perform multimodal tasks such as classification and retrieval.
Instance-adaptive Zero-shot Chain-of-Thought Prompting Xiaosong Yuan
Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in realworld reasoning tasks. Nonetheless, the efficacy of a singular, task-level prompt uniformly applied across the whole of instances is inherently limited since one prompt cannot be a good partner for all, a more appropriate approach should consider the interaction between the prompt and each instance meticulously. This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts. Concretely, we first employ analysis on LLMs through the lens of information flow to detect the mechanism under zero-shot CoT reasoning, in which we discover that information flows from question to prompt and question to rationale jointly influence the reasoning results most. We notice that a better zero-shot CoT reasoning needs the prompt to obtain semantic information from the question, and then the rationale aggregates sufficient information from the question directly and via the prompt indirectly. On the contrary, lacking any of those would probably lead to a bad one. Stem from that, we further propose an instance-adaptive prompting strategy (IAP) for zero-shot CoT reasoning. Experiments conducted with LLaMA-2, LLaMA-3, and Qwen on math, logic, and commonsense reasoning tasks (e.g., GSM8k, MMLU, Causal Judgement) obtain consistent improvement, demonstrating that the instance-adaptive zero-shot CoT prompting performs better than other task-level methods with some curated prompts or sophisticated procedures, showing the significance of our findings in the zero-shot CoT reasoning mechanism.
Distributed Flexible Nonlinear Tensor Factorization
Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi, Zoubin Ghahramani
Tensor factorization is a powerful tool to analyse multi-way data. Recently proposed nonlinear factorization methods, although capable of capturing complex relationships, are computationally quite expensive and may suffer a severe learning bias in case of extreme data sparsity. Therefore, we propose a distributed, flexible nonlinear tensor factorization model, which avoids the expensive computations and structural restrictions of the Kronecker-product in the existing TGP formulations, allowing an arbitrary subset of tensorial entries to be selected for training. Meanwhile, we derive a tractable and tight variational evidence lower bound (ELBO) that enables highly decoupled, parallel computations and high-quality inference.