The 10 Deep Learning Methods AI Practitioners Need to Apply


Interest in machine learning has exploded over the past decade. You see machine learning in computer science programs, industry conferences, and the Wall Street Journal almost daily. For all the talk about machine learning, many conflate what it can do with what they wish it could do. Fundamentally,...

Must Know Tips/Tricks in Deep Neural Networks


Guest blog post by Xiu-Shen Wei, originally posted here. Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramati...

Optimization for Deep Learning Highlights in 2017


Deep Learning ultimately is about finding a minimum that generalizes well -- with bonus points for finding one fast and reliably. Our workhorse, stochastic gradient descent (SGD), is a 60-year old algorithm (Robbins and Monro, 1951) [1], that is as essential to the current generation of Deep Learnin...

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples Artificial Intelligence

We identify obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples. While defenses that cause obfuscated gradients appear to defeat iterative optimization-based attacks, we find defenses relying on this effect can be circumvented. For each of the three types of obfuscated gradients we discover, we describe characteristic behaviors of defenses exhibiting this effect and develop attack techniques to overcome it. In a case study, examining non-certified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 8 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely and 1 partially.

Overcoming catastrophic forgetting with hard attention to the task Artificial Intelligence

Catastrophic forgetting occurs when a neural network loses the information learned in a previous task after training on subsequent tasks. This problem remains a hurdle for artificial intelligence systems with sequential learning capabilities. In this paper, we propose a task-based hard attention mechanism that preserves previous tasks' information without affecting the current task's learning. A hard attention mask is learned concurrently to every task, through stochastic gradient descent, and previous masks are exploited to condition such learning. We show that the proposed mechanism is effective for reducing catastrophic forgetting, cutting current rates by 45 to 80%. We also show that it is robust to different hyperparameter choices, and that it offers a number of monitoring capabilities. The approach features the possibility to control both the stability and compactness of the learned knowledge, which we believe makes it also attractive for online learning or network compression applications.

YellowFin and the Art of Momentum Tuning Artificial Intelligence

Hyperparameter tuning is one of the most time-consuming workloads in deep learning. State-of-the-art optimizers, such as AdaGrad, RMSProp and Adam, reduce this labor by adaptively tuning an individual learning rate for each variable. Recently researchers have shown renewed interest in simpler methods like momentum SGD as they may yield better test metrics. Motivated by this trend, we ask: can simple adaptive methods based on SGD perform as well or better? We revisit the momentum SGD algorithm and show that hand-tuning a single learning rate and momentum makes it competitive with Adam. We then analyze its robustness to learning rate misspecification and objective curvature variation. Based on these insights, we design YellowFin, an automatic tuner for momentum and learning rate in SGD. YellowFin optionally uses a negative-feedback loop to compensate for the momentum dynamics in asynchronous settings on the fly. We empirically show that YellowFin can converge in fewer iterations than Adam on ResNets and LSTMs for image recognition, language modeling and constituency parsing, with a speedup of up to 3.28x in synchronous and up to 2.69x in asynchronous settings.

Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm Artificial Intelligence

Learning to learn is a powerful paradigm for enabling models to learn from data more effectively and efficiently. A popular approach to meta-learning is to train a recurrent model to read in a training dataset as input and output the parameters of a learned model, or output predictions for new test inputs. Alternatively, a more recent approach to meta-learning aims to acquire deep representations that can be effectively fine-tuned, via standard gradient descent, to new tasks. In this paper, we consider the meta-learning problem from the perspective of universality, formalizing the notion of learning algorithm approximation and comparing the expressive power of the aforementioned recurrent models to the more recent approaches that embed gradient descent into the meta-learner. In particular, we seek to answer the following question: does deep representation combined with standard gradient descent have sufficient capacity to approximate any learning algorithm? We find that this is indeed true, and further find, in our experiments, that gradient-based meta-learning consistently leads to learning strategies that generalize more widely compared to those represented by recurrent models.

A Bayesian Perspective on Generalization and Stochastic Gradient Descent Artificial Intelligence

We consider two questions at the heart of machine learning; how can we predict if a minimum will generalize to the test set, and why does stochastic gradient descent find minima that generalize well? Our work responds to Zhang et al. (2016), who showed deep neural networks can easily memorize randomly labeled training data, despite generalizing well on real labels of the same inputs. We show that the same phenomenon occurs in small linear models. These observations are explained by the Bayesian evidence, which penalizes sharp minima but is invariant to model parameterization. We also demonstrate that, when one holds the learning rate fixed, there is an optimum batch size which maximizes the test set accuracy. We propose that the noise introduced by small mini-batches drives the parameters towards minima whose evidence is large. Interpreting stochastic gradient descent as a stochastic differential equation, we identify the "noise scale" $g = \epsilon (\frac{N}{B} - 1) \approx \epsilon N/B$, where $\epsilon$ is the learning rate, $N$ the training set size and $B$ the batch size. Consequently the optimum batch size is proportional to both the learning rate and the size of the training set, $B_{opt} \propto \epsilon N$. We verify these predictions empirically.

Reinforcement Learning from Imperfect Demonstrations Artificial Intelligence

Robust real-world learning should benefit from both demonstrations and interactions with the environment. Current approaches to learning from demonstration and reward perform supervised learning on expert demonstration data and use reinforcement learning to further improve performance based on the reward received from the environment. These tasks have divergent losses which are difficult to jointly optimize and such methods can be very sensitive to noisy demonstrations. We propose a unified reinforcement learning algorithm, Normalized Actor-Critic (NAC), that effectively normalizes the Q-function, reducing the Q-values of actions unseen in the demonstration data. NAC learns an initial policy network from demonstrations and refines the policy in the environment, surpassing the demonstrator's performance. Crucially, both learning from demonstration and interactive refinement use the same objective, unlike prior approaches that combine distinct supervised and reinforcement losses. This makes NAC robust to suboptimal demonstration data since the method is not forced to mimic all of the examples in the dataset. We show that our unified reinforcement learning algorithm can learn robustly and outperform existing baselines when evaluated on several realistic driving games.

Evolved Policy Gradients Artificial Intelligence

We propose a meta-learning approach for learning gradient-based reinforcement learning (RL) algorithms. The idea is to evolve a differentiable loss function, such that an agent, which optimizes its policy to minimize this loss, will achieve high rewards. The loss is parametrized via temporal convolutions over the agent's experience. Because this loss is highly flexible in its ability to take into account the agent's history, it enables fast task learning and eliminates the need for reward shaping at test time. Empirical results show that our evolved policy gradient algorithm achieves faster learning on several randomized environments compared to an off-the-shelf policy gradient method. Moreover, at test time, our learner optimizes only its learned loss function, and requires no explicit reward signal. In effect, the agent internalizes the reward structure, suggesting a direction toward agents that learn to solve new tasks simply from intrinsic motivation.