ChatQA: Surpassing GPT-4 on Conversational QA and RAG Wei Ping 1 Rajarshi Roy 1

Neural Information Processing Systems 

In this work, we introduce ChatQA, a suite of models that outperform GPT-4 on retrieval-augmented generation (RAG) and conversational question answering (QA). To enhance generation, we propose a two-stage instruction tuning method that significantly boosts the performance of RAG. For effective retrieval, we introduce a dense retriever optimized for conversational QA, which yields results comparable to the alternative state-of-the-art query rewriting models, while substantially reducing deployment costs.