Goto

Collaborating Authors

PDF


From internal models toward metacognitive AI

arXiv.org Artificial Intelligence

In several papers published in Biological Cybernetics in the 1980s and 1990s, Kawato and colleagues proposed computational models explaining how internal models are acquired in the cerebellum. These models were later supported by neurophysiological experiments using monkeys and neuroimaging experiments involving humans. These early studies influenced neuroscience from basic, sensory-motor control to higher cognitive functions. One of the most perplexing enigmas related to internal models is to understand the neural mechanisms that enable animals to learn large-dimensional problems with so few trials. Consciousness and metacognition -- the ability to monitor one's own thoughts, may be part of the solution to this enigma. Based on literature reviews of the past 20 years, here we propose a computational neuroscience model of metacognition. The model comprises a modular hierarchical reinforcement-learning architecture of parallel and layered, generative-inverse model pairs. In the prefrontal cortex, a distributed executive network called the "cognitive reality monitoring network" (CRMN) orchestrates conscious involvement of generative-inverse model pairs in perception and action. Based on mismatches between computations by generative and inverse models, as well as reward prediction errors, CRMN computes a "responsibility signal" that gates selection and learning of pairs in perception, action, and reinforcement learning. A high responsibility signal is given to the pairs that best capture the external world, that are competent in movements (small mismatch), and that are capable of reinforcement learning (small reward prediction error). CRMN selects pairs with higher responsibility signals as objects of metacognition, and consciousness is determined by the entropy of responsibility signals across all pairs.


Deep Joint Source-Channel Coding for Multi-Task Network

arXiv.org Artificial Intelligence

Multi-task learning (MTL) is an efficient way to improve the performance of related tasks by sharing knowledge. However, most existing MTL networks run on a single end and are not suitable for collaborative intelligence (CI) scenarios. In this work, we propose an MTL network with a deep joint source-channel coding (JSCC) framework, which allows operating under CI scenarios. We first propose a feature fusion based MTL network (FFMNet) for joint object detection and semantic segmentation. Compared with other MTL networks, FFMNet gets higher performance with fewer parameters. Then FFMNet is split into two parts, which run on a mobile device and an edge server respectively. The feature generated by the mobile device is transmitted through the wireless channel to the edge server. To reduce the transmission overhead of the intermediate feature, a deep JSCC network is designed. By combining two networks together, the whole model achieves 512x compression for the intermediate feature and a performance loss within 2% on both tasks. At last, by training with noise, the FFMNet with JSCC is robust to various channel conditions and outperforms the separate source and channel coding scheme.


Federated Deep Learning with Bayesian Privacy

arXiv.org Artificial Intelligence

Federated learning (FL) aims to protect data privacy by cooperatively learning a model without sharing private data among users. For Federated Learning of Deep Neural Network with billions of model parameters, existing privacy-preserving solutions are unsatisfactory. Homomorphic encryption (HE) based methods provide secure privacy protections but suffer from extremely high computational and communication overheads rendering it almost useless in practice . Deep learning with Differential Privacy (DP) was implemented as a practical learning algorithm at a manageable cost in complexity. However, DP is vulnerable to aggressive Bayesian restoration attacks as disclosed in the literature and demonstrated in experimental results of this work. To address the aforementioned perplexity, we propose a novel Bayesian Privacy (BP) framework which enables Bayesian restoration attacks to be formulated as the probability of reconstructing private data from observed public information. Specifically, the proposed BP framework accurately quantifies privacy loss by Kullback-Leibler (KL) Divergence between the prior distribution about the privacy data and the posterior distribution of restoration private data conditioning on exposed information}. To our best knowledge, this Bayesian Privacy analysis is the first to provides theoretical justification of secure privacy-preserving capabilities against Bayesian restoration attacks. As a concrete use case, we demonstrate that a novel federated deep learning method using private passport layers is able to simultaneously achieve high model performance, privacy-preserving capability and low computational complexity. Theoretical analysis is in accordance with empirical measurements of information leakage extensively experimented with a variety of DNN networks on image classification MNIST, CIFAR10, and CIFAR100 datasets.


Text-based Person Search in Full Images via Semantic-Driven Proposal Generation

arXiv.org Artificial Intelligence

Finding target persons in full scene images with a query of text description has important practical applications in intelligent video surveillance.However, different from the real-world scenarios where the bounding boxes are not available, existing text-based person retrieval methods mainly focus on the cross modal matching between the query text descriptions and the gallery of cropped pedestrian images. To close the gap, we study the problem of text-based person search in full images by proposing a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks. To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals. Besides, a cross-scale visual-semantic embedding mechanism is utilized to improve the performance. To validate the proposed method, we collect and annotate two large-scale benchmark datasets based on the widely adopted image-based person search datasets CUHK-SYSU and PRW. Comprehensive experiments are conducted on the two datasets and compared with the baseline methods, our method achieves the state-of-the-art performance.


Discovering Drug-Target Interaction Knowledge from Biomedical Literature

arXiv.org Artificial Intelligence

The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications. As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from biomedical literature, which are usually triplets about drugs, targets and their interaction, becomes an urgent demand in the industry. Existing methods of discovering biological knowledge are mainly extractive approaches that often require detailed annotations (e.g., all mentions of biological entities, relations between every two entity mentions, etc.). However, it is difficult and costly to obtain sufficient annotations due to the requirement of expert knowledge from biomedical domains. To overcome these difficulties, we explore the first end-to-end solution for this task by using generative approaches. We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations. Further, we propose a semi-supervised method, which leverages the aforementioned end-to-end model to filter unlabeled literature and label them. Experimental results show that our method significantly outperforms extractive baselines on DTI discovery. We also create a dataset, KD-DTI, to advance this task and will release it to the community.


DRL-based Slice Placement under Realistic Network Load Conditions

arXiv.org Artificial Intelligence

We propose to demonstrate a network slice placement optimization solution based on Deep Reinforcement Learning (DRL), referred to as Heuristically-controlled DRL, which uses a heuristic to control the DRL algorithm convergence. The solution is adapted to realistic networks with large scale and under non-stationary traffic conditions (namely, the network load). We demonstrate the applicability of the proposed solution and its higher and stable performance over a non-controlled DRL-based solution. Demonstration scenarios include full online learning with multiple volatile network slice placement request arrivals.


FQuAD2.0: French Question Answering and knowing that you know nothing

arXiv.org Artificial Intelligence

Question Answering, including Reading Comprehension, is one of the NLP research areas that has seen significant scientific breakthroughs over the past few years, thanks to the concomitant advances in Language Modeling. Most of these breakthroughs, however, are centered on the English language. In 2020, as a first strong initiative to bridge the gap to the French language, Illuin Technology introduced FQuAD1.1, a French Native Reading Comprehension dataset composed of 60,000+ questions and answers samples extracted from Wikipedia articles. Nonetheless, Question Answering models trained on this dataset have a major drawback: they are not able to predict when a given question has no answer in the paragraph of interest, therefore making unreliable predictions in various industrial use-cases. In the present work, we introduce FQuAD2.0, which extends FQuAD with 17,000+ unanswerable questions, annotated adversarially, in order to be similar to answerable ones. This new dataset, comprising a total of almost 80,000 questions, makes it possible to train French Question Answering models with the ability of distinguishing unanswerable questions from answerable ones. We benchmark several models with this dataset: our best model, a fine-tuned CamemBERT-large, achieves a F1 score of 82.3% on this classification task, and a F1 score of 83% on the Reading Comprehension task.


Assessing clinical utility of Machine Learning and Artificial Intelligence approaches to analyze speech recordings in Multiple Sclerosis: A Pilot Study

arXiv.org Artificial Intelligence

Background: An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. Objective: To determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. Methods: A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-curve. Results: The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. Conclusion: Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding MS diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.


Path Based Hierarchical Clustering on Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge graphs have emerged as a widely adopted medium for storing relational data, making methods for automatically reasoning with them highly desirable. In this paper, we present a novel approach for inducing a hierarchy of subject clusters, building upon our earlier work done in taxonomy induction. Our method first constructs a tag hierarchy before assigning subjects to clusters on this hierarchy. We quantitatively demonstrate our method's ability to induce a coherent cluster hierarchy on three real-world datasets.


Introspective Robot Perception using Smoothed Predictions from Bayesian Neural Networks

arXiv.org Artificial Intelligence

This work focuses on improving uncertainty estimation in the field of object classification from RGB images and demonstrates its benefits in two robotic applications. We employ a Bayesian Neural Network (BNN), and evaluate two practical inference techniques to obtain better uncertainty estimates, namely Concrete Dropout (CDP) and Kronecker-factored Laplace Approximation (LAP). We show a performance increase using more reliable uncertainty estimates as unary potentials within a Conditional Random Field (CRF), which is able to incorporate contextual information as well. Furthermore, the obtained uncertainties are exploited to achieve domain adaptation in a semi-supervised manner, which requires less manual efforts in annotating data. We evaluate our approach on two public benchmark datasets that are relevant for robot perception tasks.