Collaborating Authors


Computational Mechanism for the Effect of Psychosis Community Treatment: A Conceptual Review from Neurobiology to Social Interaction Artificial Intelligence

The computational underpinnings of positive psychotic symptoms have recently received significant attention. Candidate mechanisms include some combination of maladaptive priors and reduced updating of these priors during perception. A potential benefit of models with such mechanisms is their ability to link multiple levels of explanation. This is key to improving how we understand the experience of psychosis. Moreover, it points us towards more comprehensive avenues for therapeutic research by providing a putative mechanism that could allow for the generation of new treatments from first principles. In order to demonstrate this, our conceptual paper will discuss the application of the insights from previous computational models to an important and complex set of evidence-based clinical interventions with strong social elements, such as coordinated specialty care clinics in early psychosis and assertive community treatment. These interventions may include but also go beyond psychopharmacology, providing, we argue, structure and predictability for patients experiencing psychosis. We develop the argument that this structure and predictability directly counteract the relatively low precision afforded to sensory information in psychosis, while also providing the patient more access to external cognitive resources in the form of providers and the structure of the programs themselves. We discuss how computational models explain the resulting reduction in symptoms, as well as the predictions these models make about potential responses of patients to modifications or to different variations of these interventions. We also link, via the framework of computational models, the experiences of patients and response to interventions to putative neurobiology.

Equality before the Law: Legal Judgment Consistency Analysis for Fairness Artificial Intelligence

In a legal system, judgment consistency is regarded as one of the most important manifestations of fairness. However, due to the complexity of factual elements that impact sentencing in real-world scenarios, few works have been done on quantitatively measuring judgment consistency towards real-world data. In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo), which aims to evaluate inconsistency between data groups divided by specific features (e.g., gender, region, race). We propose to simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups. Experimental results on the synthetic data verify the effectiveness of LInCo. We further employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency; (2) The level of regional inconsistency varies little across different time periods; (3) In general, judicial inconsistency is negatively correlated with the severity of the criminal charges. Besides, we use LInCo to evaluate the performance of several de-bias methods, such as adversarial learning, and find that these mechanisms can effectively help LJP models to avoid suffering from data bias.

On the Complexity of Learning Description Logic Ontologies Artificial Intelligence

Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences. (Semi-)automating the process of building an ontology has attracted researchers from different communities into a field called "Ontology Learning". We provide a formal specification of the exact and the probably approximately correct learning models from computational learning theory. Then, we recall from the literature complexity results for learning lightweight description logic (DL) ontologies in these models. Finally, we highlight other approaches proposed in the literature for learning DL ontologies.

Exploiting Class Similarity for Machine Learning with Confidence Labels and Projective Loss Functions Artificial Intelligence

Class labels used for machine learning are relatable to each other, with certain class labels being more similar to each other than others (e.g. images of cats and dogs are more similar to each other than those of cats and cars). Such similarity among classes is often the cause of poor model performance due to the models confusing between them. Current labeling techniques fail to explicitly capture such similarity information. In this paper, we instead exploit the similarity between classes by capturing the similarity information with our novel confidence labels. Confidence labels are probabilistic labels denoting the likelihood of similarity, or confusability, between the classes. Often even after models are trained to differentiate between classes in the feature space, the similar classes' latent space still remains clustered. We view this type of clustering as valuable information and exploit it with our novel projective loss functions. Our projective loss functions are designed to work with confidence labels with an ability to relax the loss penalty for errors that confuse similar classes. We use our approach to train neural networks with noisy labels, as we believe noisy labels are partly a result of confusability arising from class similarity. We show improved performance compared to the use of standard loss functions. We conduct a detailed analysis using the CIFAR-10 dataset and show our proposed methods' applicability to larger datasets, such as ImageNet and Food-101N.

Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach Machine Learning

We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available. Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions. In this paper, we tackle the primary challenge to causal inference using negative controls: the identification and estimation of these bridge functions. Previous work has relied on uniqueness and completeness assumptions on these functions that may be implausible in practice and also focused on their parametric estimation. Instead, we provide a new identification strategy that avoids both uniqueness and completeness. And, we provide a new estimators for these functions based on minimax learning formulations. These estimators accommodate general function classes such as reproducing Hilbert spaces and neural networks. We study finite-sample convergence results both for estimating bridge function themselves and for the final estimation of the causal parameter. We do this under a variety of combinations of assumptions that include realizability and closedness conditions on the hypothesis and critic classes employed in the minimax estimator. Depending on how much we are willing to assume, we obtain different convergence rates. In some cases, we show the estimate for the causal parameter may converge even when our bridge function estimators do not converge to any valid bridge function. And, in other cases, we show we can obtain semiparametric efficiency.

Multinomial Logit Contextual Bandits: Provable Optimality and Practicality Machine Learning

We consider a sequential assortment selection problem where the user choice is given by a multinomial logit (MNL) choice model whose parameters are unknown. In each period, the learning agent observes a $d$-dimensional contextual information about the user and the $N$ available items, and offers an assortment of size $K$ to the user, and observes the bandit feedback of the item chosen from the assortment. We propose upper confidence bound based algorithms for this MNL contextual bandit. The first algorithm is a simple and practical method which achieves an $\tilde{\mathcal{O}}(d\sqrt{T})$ regret over $T$ rounds. Next, we propose a second algorithm which achieves a $\tilde{\mathcal{O}}(\sqrt{dT})$ regret. This matches the lower bound for the MNL bandit problem, up to logarithmic terms, and improves on the best known result by a $\sqrt{d}$ factor. To establish this sharper regret bound, we present a non-asymptotic confidence bound for the maximum likelihood estimator of the MNL model that may be of independent interest as its own theoretical contribution. We then revisit the simpler, significantly more practical, first algorithm and show that a simple variant of the algorithm achieves the optimal regret for a broad class of important applications.

Interpretable Approximation of High-Dimensional Data Machine Learning

In this paper we apply the previously introduced approximation method based on the ANOVA (analysis of variance) decomposition and Grouped Transformations to synthetic and real data. The advantage of this method is the interpretability of the approximation, i.e., the ability to rank the importance of the attribute interactions or the variable couplings. Moreover, we are able to generate an attribute ranking to identify unimportant variables and reduce the dimensionality of the problem. We compare the method to other approaches on publicly available benchmark datasets.

Neural Architecture Search From Fr\'echet Task Distance Machine Learning

We formulate a Fr\'echet-type asymmetric distance between tasks based on Fisher Information Matrices. We show how the distance between a target task and each task in a given set of baseline tasks can be used to reduce the neural architecture search space for the target task. The complexity reduction in search space for task-specific architectures is achieved by building on the optimized architectures for similar tasks instead of doing a full search without using this side information. Experimental results demonstrate the efficacy of the proposed approach and its improvements over the state-of-the-art methods.

Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE Machine Learning

While much efforts have been focused on improving Variational Autoencoders through richer posterior and prior distributions, little interest was shown in amending the way we generate the data. In this paper, we develop two non \emph{prior-dependent} generation procedures based on the geometry of the latent space seen as a Riemannian manifold. The first one consists in sampling along geodesic paths which is a natural way to explore the latent space while the second one consists in sampling from the inverse of the metric volume element which is easier to use in practice. Both methods are then compared to \emph{prior-based} methods on various data sets and appear well suited for a limited data regime. Finally, the latter method is used to perform data augmentation in a small sample size setting and is validated across various standard and \emph{real-life} data sets. In particular, this scheme allows to greatly improve classification results on the OASIS database where balanced accuracy jumps from 80.7% for a classifier trained with the raw data to 89.1% when trained only with the synthetic data generated by our method. Such results were also observed on 4 standard data sets.

The ThreeDWorld Transport Challenge: A Visually Guided Task-and-Motion Planning Benchmark for Physically Realistic Embodied AI Artificial Intelligence

We introduce a visually-guided and physics-driven task-and-motion planning benchmark, which we call the ThreeDWorld Transport Challenge. In this challenge, an embodied agent equipped with two 9-DOF articulated arms is spawned randomly in a simulated physical home environment. The agent is required to find a small set of objects scattered around the house, pick them up, and transport them to a desired final location. We also position containers around the house that can be used as tools to assist with transporting objects efficiently. To complete the task, an embodied agent must plan a sequence of actions to change the state of a large number of objects in the face of realistic physical constraints. We build this benchmark challenge using the ThreeDWorld simulation: a virtual 3D environment where all objects respond to physics, and where can be controlled using fully physics-driven navigation and interaction API. We evaluate several existing agents on this benchmark. Experimental results suggest that: 1) a pure RL model struggles on this challenge; 2) hierarchical planning-based agents can transport some objects but still far from solving this task. We anticipate that this benchmark will empower researchers to develop more intelligent physics-driven robots for the physical world.