Goto

Collaborating Authors

Equivariant Blurring Diffusion for Hierarchical Molecular Conformer Generation

Neural Information Processing Systems

How can diffusion models process 3D geometries in a coarse-to-fine manner, akin to our multiscale view of the world? In this paper, we address the question by focusing on a fundamental biochemical problem of generating 3D molecular conformers conditioned on molecular graphs in a multiscale manner. Our approach consists of two hierarchical stages: i) generation of coarse-grained fragment-level 3D structure from the molecular graph, and ii) generation of fine atomic details from the coarse-grained approximated structure while allowing the latter to be adjusted simultaneously. For the challenging second stage, which demands preserving coarse-grained information while ensuring SE(3) equivariance, we introduce a novel generative model termed Equivariant Blurring Diffusion (EBD), which defines a forward process that moves towards the fragment-level coarse-grained structure by blurring the fine atomic details of conformers, and a reverse process that performs the opposite operation using equivariant networks. We demonstrate the effectiveness of EBD by geometric and chemical comparison to state-of-theart denoising diffusion models on a benchmark of drug-like molecules. Ablation studies draw insights on the design of EBD by thoroughly analyzing its architecture, which includes the design of the loss function and the data corruption process. Codes are released at https://github.com/Shen-Lab/EBD.


Compositional 3D-aware Video Generation with LLM Director

Neural Information Processing Systems

Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video (e.g., scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts.


Stochastic Online AUC Maximization

Neural Information Processing Systems

Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training examples of opposite classes, and existing methods achieves on-line processing with higher space and time complexity. In this work, we propose a new stochastic online algorithm for AUC maximization. In particular, we show that AUC optimization can be equivalently formulated as a convex-concave saddle point problem. From this saddle representation, a stochastic online algorithm (SOLAM) is proposed which has time and space complexity of one datum. We establish theoretical convergence of SOLAM with high probability and demonstrate its effectiveness on standard benchmark datasets.


Rethinking No-reference Image Exposure Assessment from Holism to Pixel: Models, Datasets and Benchmarks

Neural Information Processing Systems

The past decade has witnessed an increasing demand for enhancing image quality through exposure, and as a crucial prerequisite in this endeavor, Image Exposure Assessment (IEA) is now being accorded serious attention. However, IEA encounters two persistent challenges that remain unresolved over the long term: the accuracy and generalizability of No-reference IEA are inadequate for practical applications; the scope of IEA is confined to qualitative and quantitative analysis of the entire image or subimage, such as providing only a score to evaluate the exposure level, thereby lacking intuitive and precise fine-grained evaluation for complex exposure conditions. The objective of this paper is to address the persistent bottleneck challenges from three perspectives: model, dataset, and benchmark.


Unveiling LoRA Intrinsic Ranks via Salience Analysis

Neural Information Processing Systems

The immense parameter scale of large language models underscores the necessity for parameter-efficient fine-tuning methods. Methods based on Low-Rank Adaptation (LoRA) assume the low-rank characteristics of the incremental matrix and optimize the matrix obtained from low-rank decomposition. Although effective, these methods are constrained by a fixed and unalterable rank, neglecting the variable importance of matrices. Consequently, methods for adaptive rank allocation are proposed, among which AdaLoRA demonstrates excellent fine-tuning performance. AdaLoRA conducts adaptation based on singular value decomposition (SVD), dynamically allocating ranks according to importance.


Beyond the Doors of Perception: Vision Transformers Represent Relations Between Objects 1 Thomas Serre

Neural Information Processing Systems

Though vision transformers (ViTs) have achieved state-of-the-art performance in a variety of settings, they exhibit surprising failures when performing tasks involving visual relations. This begs the question: how do ViTs attempt to perform tasks that require computing visual relations between objects? Prior efforts to interpret ViTs tend to focus on characterizing relevant low-level visual features. In contrast, we adopt methods from mechanistic interpretability to study the higher-level visual algorithms that ViTs use to perform abstract visual reasoning. We present a case study of a fundamental, yet surprisingly difficult, relational reasoning task: judging whether two visual entities are the same or different. We find that pretrained ViTs fine-tuned on this task often exhibit two qualitatively different stages of processing despite having no obvious inductive biases to do so: 1) a perceptual stage wherein local object features are extracted and stored in a disentangled representation, and 2) a relational stage wherein object representations are compared. In the second stage, we find evidence that ViTs can sometimes learn to represent abstract visual relations, a capability that has long been considered out of reach for artificial neural networks. Finally, we demonstrate that failures at either stage can prevent a model from learning a generalizable solution to our fairly simple tasks.


Clustering with Bregman Divergences: an Asymptotic Analysis

Neural Information Processing Systems

Clustering, in particular k-means clustering, is a central topic in data analysis. Clustering with Bregman divergences is a recently proposed generalization of k-means clustering which has already been widely used in applications. In this paper we analyze theoretical properties of Bregman clustering when the number of the clusters k is large. We establish quantization rates and describe the limiting distribution of the centers as k, extending well-known results for k-means clustering.


Nearly Tight Black-Box Auditing of Differentially Private Machine Learning

Neural Information Processing Systems

This paper presents an auditing procedure for the Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm in the black-box threat model that is substantially tighter than prior work. The main intuition is to craft worst-case initial model parameters, as DP-SGD's privacy analysis is agnostic to the choice of the initial model parameters. For models trained on MNIST and CIFAR-10 at theoretical ฮต = 10.0, our auditing procedure yields empirical estimates of ฮต


Inference of Neural Dynamics Using Switching Recurrent Neural Networks

Neural Information Processing Systems

Neural population activity often exhibits distinct dynamical features across time, which may correspond to distinct internal processes or behavior. Linear methods and variations thereof, such as Hidden Markov Model (HMM) and Switching Linear Dynamical System (SLDS), are often employed to identify discrete states with evolving neural dynamics. However, these techniques may not be able to capture the underlying nonlinear dynamics associated with neural propagation. Recurrent Neural Networks (RNNs) are commonly used to model neural dynamics thanks to their nonlinear characteristics. In our work, we develop Switching Recurrent Neural Networks (SRNN), RNNs with weights that switch across time, to reconstruct switching dynamics of neural time-series data. We apply these models to simulated data as well as cortical neural activity across mice and monkeys, which allows us to automatically detect discrete states that lead to the identification of varying neural dynamics. In a monkey reaching dataset with electrophysiology recordings, a mouse self-initiated lever pull dataset with widefield calcium recordings, and a mouse self-initiated decision making dataset with widefield calcium recording, SRNNs are able to automatically identify discrete states with distinct nonlinear neural dynamics. The inferred switches are aligned with the behavior, and the reconstructions show that the recovered neural dynamics are distinct across different stages of the behavior. We show that the neural dynamics have behaviorally-relevant switches across time and we are able to use SRNNs to successfully capture these switches and the corresponding dynamical features.


FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention 1 1

Neural Information Processing Systems

Video diffusion models have made substantial progress in various video generation applications. However, training models for long video generation tasks require significant computational and data resources, posing a challenge to developing long video diffusion models. This paper investigates a straightforward and training-free approach to extend an existing short video diffusion model (e.g., pre-trained on 16-frame videos) for consistent long video generation (e.g., 128 frames). Our preliminary observation has found that directly applying the short video diffusion model to generate long videos can lead to severe video quality degradation. Further investigation reveals that this degradation is primarily due to the distortion of high-frequency components in long videos, characterized by a decrease in spatial high-frequency components and an increase in temporal high-frequency components.