Conic Scan-and-Cover algorithms for nonparametric topic modeling
Mikhail Yurochkin, Aritra Guha, XuanLong Nguyen
We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of vertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques.
Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity
Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many non-identifiability and hardness results are known. In this paper we propose a provably polynomialtime algorithm for learning sparse Gaussian Bayesian networks with equal noise variance -- a class of Bayesian networks for which the DAG structure can be uniquely identified from observational data -- under high-dimensional settings.
Subset Selection and Summarization in Sequential Data
Ehsan Elhamifar, M. Clara De Paolis Kaluza
Subset selection, which is the task of finding a small subset of representative items from a large ground set, finds numerous applications in different areas. Sequential data, including time-series and ordered data, contain important structural relationships among items, imposed by underlying dynamic models of data, that should play a vital role in the selection of representatives. However, nearly all existing subset selection techniques ignore underlying dynamics of data and treat items independently, leading to incompatible sets of representatives. In this paper, we develop a new framework for sequential subset selection that finds a set of representatives compatible with the dynamic models of data. To do so, we equip items with transition dynamic models and pose the problem as an integer binary optimization over assignments of sequential items to representatives, that leads to high encoding, diversity and transition potentials. Our formulation generalizes the well-known facility location objective to deal with sequential data, incorporating transition dynamics among facilities. As the proposed formulation is non-convex, we derive a max-sum message passing algorithm to solve the problem efficiently. Experiments on synthetic and real data, including instructional video summarization, show that our sequential subset selection framework not only achieves better encoding and diversity than the state of the art, but also successfully incorporates dynamics of data, leading to compatible representatives.