Jia Deng
Pixels to Graphs by Associative Embedding
Alejandro Newell, Jia Deng
Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph definition. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and demonstrate state-of-the-art performance on the challenging task of scene graph generation.
Premise Selection for Theorem Proving by Deep Graph Embedding
Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng
We propose a deep learning-based approach to the problem of premise selection: selecting mathematical statements relevant for proving a given conjecture. We represent a higher-order logic formula as a graph that is invariant to variable renaming but still fully preserves syntactic and semantic information. We then embed the graph into a vector via a novel embedding method that preserves the information of edge ordering. Our approach achieves state-of-the-art results on the HolStep dataset, improving the classification accuracy from 83% to 90.3%.
Single-Image Depth Perception in the Wild
Weifeng Chen, Zhao Fu, Dawei Yang, Jia Deng
This paper studies single-image depth perception in the wild, i.e., recovering depth from a single image taken in unconstrained settings. We introduce a new dataset "Depth in the Wild" consisting of images in the wild annotated with relative depth between pairs of random points. We also propose a new algorithm that learns to estimate metric depth using annotations of relative depth. Compared to the state of the art, our algorithm is simpler and performs better. Experiments show that our algorithm, combined with existing RGB-D data and our new relative depth annotations, significantly improves single-image depth perception in the wild.
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
Alejandro Newell, Zhiao Huang, Jia Deng
We introduce associative embedding, a novel method for supervising convolutional neural networks for the task of detection and grouping. A number of computer vision problems can be framed in this manner including multi-person pose estimation, instance segmentation, and multi-object tracking. Usually the grouping of detections is achieved with multi-stage pipelines, instead we propose an approach that teaches a network to simultaneously output detections and group assignments. This technique can be easily integrated into any state-of-the-art network architecture that produces pixel-wise predictions. We show how to apply this method to multi-person pose estimation and report state-of-the-art performance on the MPII and MS-COCO datasets.
Pixels to Graphs by Associative Embedding
Alejandro Newell, Jia Deng
Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph definition. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and demonstrate state-of-the-art performance on the challenging task of scene graph generation.
Premise Selection for Theorem Proving by Deep Graph Embedding
Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng
We propose a deep learning-based approach to the problem of premise selection: selecting mathematical statements relevant for proving a given conjecture. We represent a higher-order logic formula as a graph that is invariant to variable renaming but still fully preserves syntactic and semantic information. We then embed the graph into a vector via a novel embedding method that preserves the information of edge ordering. Our approach achieves state-of-the-art results on the HolStep dataset, improving the classification accuracy from 83% to 90.3%.