Mikhail Yurochkin
Geometric Dirichlet Means Algorithm for topic inference
Mikhail Yurochkin, XuanLong Nguyen
We propose a geometric algorithm for topic learning and inference that is built on the convex geometry of topics arising from the Latent Dirichlet Allocation (LDA) model and its nonparametric extensions. To this end we study the optimization of a geometric loss function, which is a surrogate to the LDA's likelihood. Our method involves a fast optimization based weighted clustering procedure augmented with geometric corrections, which overcomes the computational and statistical inefficiencies encountered by other techniques based on Gibbs sampling and variational inference, while achieving the accuracy comparable to that of a Gibbs sampler. The topic estimates produced by our method are shown to be statistically consistent under some conditions. The algorithm is evaluated with extensive experiments on simulated and real data.
Alleviating Label Switching with Optimal Transport
Pierre Monteiller, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon, Mikhail Yurochkin
Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of the posterior under actions of a group; for example, permuting the ordering of mixture components has no effect on the likelihood. We propose a resolution to label switching that leverages machinery from optimal transport. Our algorithm efficiently computes posterior statistics in the quotient space of the symmetry group. We give conditions under which there is a meaningful solution to label switching and demonstrate advantages over alternative approaches on simulated and real data.
Hierarchical Optimal Transport for Document Representation
Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon
The ability to measure similarity between documents enables intelligent summarization and analysis of large corpora. Past distances between documents suffer from either an inability to incorporate semantic similarities between words or from scalability issues. As an alternative, we introduce hierarchical optimal transport as a meta-distance between documents, where documents are modeled as distributions over topics, which themselves are modeled as distributions over words. We then solve an optimal transport problem on the smaller topic space to compute a similarity score. We give conditions on the topics under which this construction defines a distance, and we relate it to the word mover's distance. We evaluate our technique for k-NN classification and show better interpretability and scalability with comparable performance to current methods at a fraction of the cost.
Scalable inference of topic evolution via models for latent geometric structures
Mikhail Yurochkin, Zhiwei Fan, Aritra Guha, Paraschos Koutris, XuanLong Nguyen
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
Multi-way Interacting Regression via Factorization Machines
Mikhail Yurochkin, XuanLong Nguyen, nikolaos Vasiloglou
We propose a Bayesian regression method that accounts for multi-way interactions of arbitrary orders among the predictor variables. Our model makes use of a factorization mechanism for representing the regression coefficients of interactions among the predictors, while the interaction selection is guided by a prior distribution on random hypergraphs, a construction which generalizes the Finite Feature Model. We present a posterior inference algorithm based on Gibbs sampling, and establish posterior consistency of our regression model. Our method is evaluated with extensive experiments on simulated data and demonstrated to be able to identify meaningful interactions in applications in genetics and retail demand forecasting.
Conic Scan-and-Cover algorithms for nonparametric topic modeling
Mikhail Yurochkin, Aritra Guha, XuanLong Nguyen
We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of vertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques.
Alleviating Label Switching with Optimal Transport
Pierre Monteiller, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon, Mikhail Yurochkin
Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of the posterior under actions of a group; for example, permuting the ordering of mixture components has no effect on the likelihood. We propose a resolution to label switching that leverages machinery from optimal transport. Our algorithm efficiently computes posterior statistics in the quotient space of the symmetry group. We give conditions under which there is a meaningful solution to label switching and demonstrate advantages over alternative approaches on simulated and real data.
Scalable inference of topic evolution via models for latent geometric structures
Mikhail Yurochkin, Zhiwei Fan, Aritra Guha, Paraschos Koutris, XuanLong Nguyen
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.