RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar
Current methods predominantly rely on LiDAR or camera inputs for 3D occupancy prediction. These methods are susceptible to adverse weather conditions, limiting the all-weather deployment of self-driving cars. To improve perception robustness, we leverage the recent advances in automotive radars and introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction. Our method, RadarOcc, circumvents the limitations of sparse radar point clouds by directly processing the 4D radar tensor, thus preserving essential scene details. RadarOcc innovatively addresses the challenges associated with the voluminous and noisy 4D radar data by employing Doppler bins descriptors, sidelobe-aware spatial sparsification, and range-wise self-attention mechanisms. To minimize the interpolation errors associated with direct coordinate transformations, we also devise a spherical-based feature encoding followed by spherical-to-Cartesian feature aggregation. We benchmark various baseline methods based on distinct modalities on the public K-Radar dataset. The results demonstrate RadarOcc's state-of-the-art performance in radar-based 3D occupancy prediction and promising results even when compared with LiDARor camera-based methods. Additionally, we present qualitative evidence of the superior performance of 4D radar in adverse weather conditions and explore the impact of key pipeline components through ablation studies.
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss
We propose Any2Graph, a generic framework for end-to-end Supervised Graph Prediction (SGP) i.e. a deep learning model that predicts an entire graph for any kind of input. The framework is built on a novel Optimal Transport loss, the Partially-Masked Fused Gromov-Wasserstein, that exhibits all necessary properties (permutation invariance, differentiability) and is designed to handle any-sized graphs. Numerical experiments showcase the versatility of the approach that outperforms existing competitors on a novel challenging synthetic dataset and a variety of real-world tasks such as map construction from satellite image (Sat2Graph) or molecule prediction from fingerprint (Fingerprint2Graph).
Consensus Learning with Deep Sets for Essential Matrix Estimation
Robust estimation of the essential matrix, which encodes the relative position and orientation of two cameras, is a fundamental step in structure from motion pipelines. Recent deep-based methods achieved accurate estimation by using complex network architectures that involve graphs, attention layers, and hard pruning steps. Here, we propose a simpler network architecture based on Deep Sets. Given a collection of point matches extracted from two images, our method identifies outlier point matches and models the displacement noise in inlier matches. A weighted DLT module uses these predictions to regress the essential matrix. Our network achieves accurate recovery that is superior to existing networks with significantly more complex architectures.
Computing Full Conformal Prediction Set with Approximate Homotopy
Eugene Ndiaye, Ichiro Takeuchi
If you are predicting the label y of a new object with ลท, how confident are you that y = ลท? Conformal prediction methods provide an elegant framework for answering such question by building a 100(1 ฮฑ)% confidence region without assumptions on the distribution of the data. It is based on a refitting procedure that parses all the possibilities for y to select the most likely ones. Although providing strong coverage guarantees, conformal set is impractical to compute exactly for many regression problems. We propose efficient algorithms to compute conformal prediction set using approximated solution of (convex) regularized empirical risk minimization. Our approaches rely on a new homotopy continuation technique for tracking the solution path with respect to sequential changes of the observations. We also provide a detailed analysis quantifying its complexity.
Rethinking Transformer for Long Contextual Histopathology Whole Slide Image Analysis Honglin Li1,3 Pingyi Chen
Histopathology Whole Slide Image (WSI) analysis serves as the gold standard for clinical cancer diagnosis in the daily routines of doctors. To develop computeraided diagnosis model for histopathology WSIs, previous methods typically employ Multi-Instance Learning to enable slide-level prediction given only slide-level labels. Among these models, vanilla attention mechanisms without pairwise interactions have traditionally been employed but are unable to model contextual information. More recently, self-attention models have been utilized to address this issue. To alleviate the computational complexity of long sequences in large WSIs, methods like HIPT use region-slicing, and TransMIL employs Nystrรถmformer as an approximation of full self-attention.
Large Memory Layers with Product Keys
Guillaume Lample, Alexandre Sablayrolles, Marc'Aurelio Ranzato, Ludovic Denoyer, Herve Jegou
This paper introduces a structured memory which can be easily integrated into a neural network. The memory is very large by design and significantly increases the capacity of the architecture, by up to a billion parameters with a negligible computational overhead. Its design and access pattern is based on product keys, which enable fast and exact nearest neighbor search. The ability to increase the number of parameters while keeping the same computational budget lets the overall system strike a better trade-off between prediction accuracy and computation efficiency both at training and test time. This memory layer allows us to tackle very large scale language modeling tasks. In our experiments we consider a dataset with up to 30 billion words, and we plug our memory layer in a stateof-the-art transformer-based architecture. In particular, we found that a memory augmented model with only 12 layers outperforms a baseline transformer model with 24 layers, while being twice faster at inference time. We release our code for reproducibility purposes.
Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics
Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie
A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity matrices to be orthogonal or unitary. This ensures eigenvalues with unit norm and thus stable dynamics and training. However this comes at the cost of reduced expressivity due to the limited variety of orthogonal transformations. We propose a novel connectivity structure based on the Schur decomposition, though we avoid computing it explicitly, and a splitting of the Schur form into normal and non-normal parts. This allows to parametrize matrices with unit-norm eigenspectra without orthogonality constraints on eigenbases. The resulting architecture ensures access to a larger space of spectrally constrained matrices, of which orthogonal matrices are a subset. This crucial difference retains the stability advantages and training speed of orthogonal RNNs while enhancing expressivity, especially on tasks that require computations over ongoing input sequences.
9d7099d87947faa8d07a272dd6954b80-AuthorFeedback.pdf
Importantly, R3's remarks led to an expanded interpretation An updated version of our paper incorporates the points below. R1: Q"Add more explanation and insight on why the gap to LSTM performance is still larger than that to expRNN." R2: Q"[Clarify] how the asymptotic (in number of units or parameters) runtimes of the different approaches compare. Especially the runtime of optimizing P." A: The forward pass of the nnRNN has the same complexity as that of a vanilla R3: Q"There is no guarantee that nnRNN solves the exploding gradient problem. R3 astutely remarks that "[the relationship between these We provide a theorem to establish this for triangular matrices.
Multi-Scale Representation Learning for Protein Fitness Prediction Pascal Notin 3,* Yining Huang
Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of functional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets. While initial protein representation learning studies solely focused on either sequence or structural features, recent hybrid architectures have sought to merge these modalities to harness their respective strengths. However, these sequence-structure models have so far achieved only incremental improvements when compared to the leading sequence-only approaches, highlighting unresolved challenges effectively leveraging these modalities together. Moreover, the function of certain proteins is highly dependent on the granular aspects of their surface topology, which have been overlooked by prior models. To address these limitations, we introduce the Sequence-Structure-Surface Fitness (S3F) model -- a novel multimodal representation learning framework that integrates protein features across several scales. Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology. The proposed method achieves state-of-the-art fitness prediction on the ProteinGym benchmark encompassing 217 substitution deep mutational scanning assays, and provides insights into the determinants of protein function.
Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery
In this paper, we study a practical yet challenging task, On-the-fly Category Discovery (OCD), aiming to online discover the newly-coming stream data that belong to both known and unknown classes, by leveraging only known category knowledge contained in labeled data. Previous OCD methods employ the hash-based technique to represent old/new categories by hash codes for instance-wise inference. However, directly mapping features into low-dimensional hash space not only inevitably damages the ability to distinguish classes and but also causes "high sensitivity" issue, especially for fine-grained classes, leading to inferior performance. To address these issues, we propose a novel Prototypical Hash Encoding (PHE) framework consisting of Category-aware Prototype Generation (CPG) and Discriminative Category Encoding (DCE) to mitigate the sensitivity of hash code while preserving rich discriminative information contained in high-dimension feature space, in a two-stage projection fashion. CPG enables the model to fully capture the intracategory diversity by representing each category with multiple prototypes. DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes and the constraint of minimum separation distance. By jointly optimizing CPG and DCE, we demonstrate that these two components are mutually beneficial towards an effective OCD. Extensive experiments show the significant superiority of our PHE over previous methods, e.g., obtaining an improvement of +5.3% in ALL ACC averaged on all datasets. Moreover, due to the nature of the interpretable prototypes, we visually analyze the underlying mechanism of how PHE helps group certain samples into either known or unknown categories.