Goto

Collaborating Authors

Kernel functions based on triplet comparisons

Neural Information Processing Systems

Given only information in the form of similarity triplets "Object A is more similar to object B than to object C" about a data set, we propose two ways of defining a kernel function on the data set. While previous approaches construct a lowdimensional Euclidean embedding of the data set that reflects the given similarity triplets, we aim at defining kernel functions that correspond to high-dimensional embeddings. These kernel functions can subsequently be used to apply any kernel method to the data set.


Inverse Filtering for Hidden Markov Models

Neural Information Processing Systems

This paper considers a number of related inverse filtering problems for hidden Markov models (HMMs). In particular, given a sequence of state posteriors and the system dynamics; i) estimate the corresponding sequence of observations, ii) estimate the observation likelihoods, and iii) jointly estimate the observation likelihoods and the observation sequence. We show how to avoid a computationally expensive mixed integer linear program (MILP) by exploiting the algebraic structure of the HMM filter using simple linear algebra operations, and provide conditions for when the quantities can be uniquely reconstructed. We also propose a solution to the more general case where the posteriors are noisily observed. Finally, the proposed inverse filtering algorithms are evaluated on real-world polysomnographic data used for automatic sleep segmentation.


WNBA investigation finds no evidence of hateful comments toward Angel Reese

FOX News

Fox News Flash top sports headlines are here. Check out what's clicking on Foxnews.com. The WNBA and the Indiana Fever announced that the allegations of "hateful comments" directed toward Angel Reese on May 17 were "not substantiated." Reese and her Chicago Sky faced the Fever and Caitlin Clark, and at one point, the two had to be separated after a flagrant foul by Clark against Reese. The association announced the next day that it would launch an investigation into the alleged comments.


General Tensor Spectral Co-clustering for Higher-Order Data

Neural Information Processing Systems

Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of modes. The algorithm is based on a new random walk model which we call the super-spacey random surfer. We show that our method out-performs state-of-the-art co-clustering methods on several synthetic datasets with ground truth clusters and then use the algorithm to analyze several real-world datasets.


Learning to learn by gradient descent by gradient descent

Neural Information Processing Systems

The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.


Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

Neural Information Processing Systems

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator.


On Multiplicative Integration with Recurrent Neural Networks

Neural Information Processing Systems

We introduce a general simple structural design called "Multiplicative Integration" (MI) to improve recurrent neural networks (RNNs). MI changes the way of how the information flow gets integrated in the computational building block of an RNN, while introducing almost no extra parameters. The new structure can be easily embedded into many popular RNN models, including LSTMs and GRUs. We empirically analyze its learning behaviour and conduct evaluations on several tasks using different RNN models. Our experimental results demonstrate that Multiplicative Integration can provide a substantial performance boost over many of the existing RNN models.


Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Neural Information Processing Systems

Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. One of the key difficulties is insufficient exploration, resulting in an agent being unable to learn robust policies. Intrinsically motivated agents can explore new behavior for their own sake rather than to directly solve external goals. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical action-value functions, operating at different temporal scales, with goal-driven intrinsically motivated deep reinforcement learning.


High resolution neural connectivity from incomplete tracing data using nonnegative spline regression

Neural Information Processing Systems

Whole-brain neural connectivity data are now available from viral tracing experiments, which reveal the connections between a source injection site and elsewhere in the brain. To achieve this goal, we seek to fit a weighted, nonnegative adjacency matrix among 100 μm brain "voxels" using viral tracer data. Despite a multi-year experimental effort, injections provide incomplete coverage, and the number of voxels in our data is orders of magnitude larger than the number of injections, making the problem severely underdetermined. Furthermore, projection data are missing within the injection site because local connections there are not separable from the injection signal. We use a novel machine-learning algorithm to meet these challenges and develop a spatially explicit, voxel-scale connectivity map of the mouse visual system.


Unsupervised Risk Estimation Using Only Conditional Independence Structure

Neural Information Processing Systems

We show how to estimate a model's test error from unlabeled data, on distributions very different from the training distribution, while assuming only that certain conditional independencies are preserved between train and test. We do not need to assume that the optimal predictor is the same between train and test, or that the true distribution lies in any parametric family. We can also efficiently compute gradients of the estimated error and hence perform unsupervised discriminative learning. Our technical tool is the method of moments, which allows us to exploit conditional independencies in the absence of a fully-specified model. Our framework encompasses a large family of losses including the log and exponential loss, and extends to structured output settings such as conditional random fields.