High resolution neural connectivity from incomplete tracing data using nonnegative spline regression

Neural Information Processing Systems 

Whole-brain neural connectivity data are now available from viral tracing experiments, which reveal the connections between a source injection site and elsewhere in the brain. To achieve this goal, we seek to fit a weighted, nonnegative adjacency matrix among 100 μm brain "voxels" using viral tracer data. Despite a multi-year experimental effort, injections provide incomplete coverage, and the number of voxels in our data is orders of magnitude larger than the number of injections, making the problem severely underdetermined. Furthermore, projection data are missing within the injection site because local connections there are not separable from the injection signal. We use a novel machine-learning algorithm to meet these challenges and develop a spatially explicit, voxel-scale connectivity map of the mouse visual system.