eb1e78328c46506b46a4ac4a1e378b91-AuthorFeedback.pdf
Thank you for your time in reading the paper and the positive feedback! Below are responses for each reviewer. Thank you for your detailed reading of the paper and positive feedback! With even more runs, we expect this distinction will be even clearer. This is the core of the transfer learning question, and a central part of our paper.
Language Model Tokenizers Introduce Unfairness Between Languages
Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support.
Predicting Future Actions of Reinforcement Learning Agents
As reinforcement learning agents become increasingly deployed in real-world scenarios, predicting future agent actions and events during deployment is important for facilitating better human-agent interaction and preventing catastrophic outcomes. This paper experimentally evaluates and compares the effectiveness of future action and event prediction for three types of RL agents: explicitly planning, implicitly planning, and non-planning. We employ two approaches: the inner state approach, which involves predicting based on the inner computations of the agents (e.g., plans or neuron activations), and a simulation-based approach, which involves unrolling the agent in a learned world model. Our results show that the plans of explicitly planning agents are significantly more informative for prediction than the neuron activations of the other types. Furthermore, using internal plans proves more robust to model quality compared to simulation-based approaches when predicting actions, while the results for event prediction are more mixed. These findings highlight the benefits of leveraging inner states and simulations to predict future agent actions and events, thereby improving interaction and safety in real-world deployments.
CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence Dipkamal Bhusal Rochester Institute of Technology Rochester Institute of Technology Rochester, NY, USA
Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.
Spectral Filtering for General Linear Dynamical Systems
Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang
We give a polynomial-time algorithm for learning latent-state linear dynamical systems without system identification, and without assumptions on the spectral radius of the system's transition matrix. The algorithm extends the recently introduced technique of spectral filtering, previously applied only to systems with a symmetric transition matrix, using a novel convex relaxation to allow for the efficient identification of phases.
Thompson Sampling with Information Relaxation Penalties
We consider a finite-horizon multi-armed bandit (MAB) problem in a Bayesian setting, for which we propose an information relaxation sampling framework. With this framework, we define an intuitive family of control policies that include Thompson sampling (TS) and the Bayesian optimal policy as endpoints. Analogous to TS, which, at each decision epoch pulls an arm that is best with respect to the randomly sampled parameters, our algorithms sample entire future reward realizations and take the corresponding best action. However, this is done in the presence of "penalties" that seek to compensate for the availability of future information. We develop several novel policies and performance bounds for MAB problems that vary in terms of improving performance and increasing computational complexity between the two endpoints. Our policies can be viewed as natural generalizations of TS that simultaneously incorporate knowledge of the time horizon and explicitly consider the exploration-exploitation trade-off. We prove associated structural results on performance bounds and suboptimality gaps. Numerical experiments suggest that this new class of policies perform well, in particular in settings where the finite time horizon introduces significant exploration-exploitation tension into the problem.
Is Q-Learning Provably Efficient?
Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, Michael I. Jordan
Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7, 22]. The theoretical question of "whether model-free algorithms can be made sample efficient" is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions.