Goto

Collaborating Authors

Metric Flow Matching for Smooth Interpolations on the Data Manifold

Neural Information Processing Systems

Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source distribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals.



Stable Nonconvex-Nonconcave Training via Linear Interpolation

Neural Information Processing Systems

This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators.


BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and Semantic Parsing Subhro Roy 1 Sam Thomson 1 Tongfei Chen 1 Richard Shin 1

Neural Information Processing Systems

Recent work has shown that generation from a prompted or fine-tuned language model can perform well at semantic parsing when the output is constrained to be a valid semantic representation. We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing, that includes context-free grammars for seven semantic parsing datasets and two syntactic parsing datasets with varied output representations, as well as a constrained decoding interface to generate only valid outputs covered by these grammars. We provide low, medium, and high resource splits for each dataset, allowing accurate comparison of various language models under different data regimes. Our benchmark supports evaluation of language models using prompt-based learning as well as fine-tuning.


Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration

Neural Information Processing Systems

Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs.




Optimal Batched Best Arm Identification

Neural Information Processing Systems

We study the batched best arm identification (BBAI) problem, where the learner's goal is to identify the best arm while switching the policy as less as possible. In particular, we aim to find the best arm with probability 1 ฮด for some small constant ฮด > 0 while minimizing both the sample complexity (total number of arm pulls) and the batch complexity (total number of batches). We propose the three-batch best arm identification (Tri-BBAI) algorithm, which is the first batched algorithm that achieves the optimal sample complexity in the asymptotic setting (i.e., ฮด 0) and runs in 3 batches in expectation. Based on Tri-BBAI, we further propose the almost optimal batched best arm identification (Opt-BBAI) algorithm, which is the first algorithm that achieves the near-optimal sample and batch complexity in the non-asymptotic setting (i.e., ฮด is finite), while enjoying the same batch and sample complexity as Tri-BBAI when ฮด tends to zero. Moreover, in the non-asymptotic setting, the complexity of previous batch algorithms is usually conditioned on the event that the best arm is returned (with a probability of at least 1 ฮด), which is potentially unbounded in cases where a sub-optimal arm is returned. In contrast, the complexity of Opt-BBAI does not rely on such an event. This is achieved through a novel procedure that we design for checking whether the best arm is eliminated, which is of independent interest.



CALE: Continuous Arcade Learning Environment

Neural Information Processing Systems

We introduce the Continuous Arcade Learning Environment (CALE), an extension of the well-known Arcade Learning Environment (ALE) [Bellemare et al., 2013]. The CALE uses the same underlying emulator of the Atari 2600 gaming system (Stella), but adds support for continuous actions. This enables the benchmarking and evaluation of continuous-control agents (such as PPO [Schulman et al., 2017] and SAC [Haarnoja et al., 2018]) and value-based agents (such as DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018]) on the same environment suite. We provide a series of open questions and research directions that CALE enables, as well as initial baseline results using Soft Actor-Critic.