Goto

Collaborating Authors

Transferable Boltzmann Generators

Neural Information Processing Systems

The generation of equilibrium samples of molecular systems has been a longstanding problem in statistical physics. Boltzmann Generators are a generative machine learning method that addresses this issue by learning a transformation via a normalizing flow from a simple prior distribution to the target Boltzmann distribution of interest. Recently, flow matching has been employed to train Boltzmann Generators for small molecular systems in Cartesian coordinates. We extend this work and propose a first framework for Boltzmann Generators that are transferable across chemical space, such that they predict zero-shot Boltzmann distributions for test molecules without being retrained for these systems. These transferable Boltzmann Generators allow approximate sampling from the target distribution of unseen systems, as well as efficient reweighting to the target Boltzmann distribution. The transferability of the proposed framework is evaluated on dipeptides, where we show that it generalizes efficiently to unseen systems. Furthermore, we demonstrate that our proposed architecture enhances the efficiency of Boltzmann Generators trained on single molecular systems.


Feature Likelihood Divergence: Evaluating the Generalization of Generative Models Using Samples

Neural Information Processing Systems

The past few years have seen impressive progress in the development of deep generative models capable of producing high-dimensional, complex, and photo-realistic data. However, current methods for evaluating such models remain incomplete: standard likelihood-based metrics do not always apply and rarely correlate with perceptual fidelity, while sample-based metrics, such as FID, are insensitive to overfitting, i.e., inability to generalize beyond the training set. To address these limitations, we propose a new metric called the Feature Likelihood Divergence (FLD), a parametric sample-based metric that uses density estimation to provide a comprehensive trichotomic evaluation accounting for novelty (i.e., different from the training samples), fidelity, and diversity of generated samples. We empirically demonstrate the ability of FLD to identify overfitting problem cases, even when previously proposed metrics fail. We also extensively evaluate FLD on various image datasets and model classes, demonstrating its ability to match intuitions of previous metrics like FID while offering a more comprehensive evaluation of generative models. Code is available at https://github.com/marcojira/fld.


4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models

Neural Information Processing Systems

Existing dynamic scene generation methods mostly rely on distilling knowledge from pre-trained 3D generative models, which are typically fine-tuned on synthetic object datasets. As a result, the generated scenes are often object-centric and lack photorealism. To address these limitations, we introduce a novel pipeline designed for photorealistic text-to-4D scene generation, discarding the dependency on multi-view generative models and instead fully utilizing video generative models trained on diverse real-world datasets. Our method begins by generating a reference video using the video generation model. We then learn the canonical 3D representation of the video using a freeze-time video, delicately generated from the reference video. To handle inconsistencies in the freeze-time video, we jointly learn a per-frame deformation to model these imperfections. We then learn the temporal deformation based on the canonical representation to capture dynamic interactions in the reference video.


Continuous Spatiotemporal Events Decoupling through Spike-based Bayesian Computation 2 1

Neural Information Processing Systems

Numerous studies have demonstrated that the cognitive processes of the human brain can be modeled using the Bayes theorem for probabilistic inference of the external world. Spiking neural networks (SNNs), capable of performing Bayesian computation with greater physiological interpretability, offer a novel approach to distributed information processing in the cortex. However, applying these models to real-world scenarios to harness the advantages of brain-like computation remains a challenge. Recently, bio-inspired sensors with high dynamic range and ultra-high temporal resolution have been widely used in extreme vision scenarios. Event streams, generated by various types of motion, represent spatiotemporal data.



Large Scale Transfer Learning for Tabular Data via Language Modeling Josh Gardner, Juan C. Perdomo # Ludwig Schmidt

Neural Information Processing Systems

Tabular data - structured, heterogeneous, spreadsheet-style data with rows and columns - is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain.


Acceleration via Symplectic Discretization of High-Resolution Differential Equations

Neural Information Processing Systems

We study first-order optimization algorithms obtained by discretizing ordinary differential equations (ODEs) corresponding to Nesterov's accelerated gradient methods (NAGs) and Polyak's heavy-ball method. We consider three discretization schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes. We show that the optimization algorithm generated by applying the symplectic scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accelerated rate for minimizing both strongly convex functions and convex functions. On the other hand, the resulting algorithm either fails to achieve acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is explicit.


Supplementary Material for Learning Neural Implicit through Volume Rendering with Attentive Depth Fusion Priors Pengchong Hu Zhizhong Han Machine Perception Lab, Wayne State University, Detroit, USA

Neural Information Processing Systems

All MLP decoders have 5 fully-connected blocks, each of which produces a hidden feature dimension of 32. For optimizing scene geometry, we use 60 iterations on Replica [10] and ScanNet [1]. For optimizing camera tracking, we use 10 iterations and 50 iterations on Replica [10] and ScanNet [1], respectively. After the tracking procedure at time step t, the after-fusion stage first fuses the t-th depth image into T that has fused all depth images in front using the estimated t-th camera pose. Beyond the average results in our paper, we report more detailed results in Tab. 1 and Tab. 2 on Replica [10] and ScanNet [1].


Learning Neural Implicit through Volume Rendering with Attentive Depth Fusion Priors

Neural Information Processing Systems

Learning neural implicit representations has achieved remarkable performance in 3D reconstruction from multi-view images. Current methods use volume rendering to render implicit representations into either RGB or depth images that are supervised by multi-view ground truth. However, rendering a view each time suffers from incomplete depth at holes and unawareness of occluded structures from the depth supervision, which severely affects the accuracy of geometry inference via volume rendering. To resolve this issue, we propose to learn neural implicit representations from multi-view RGBD images through volume rendering with an attentive depth fusion prior. Our prior allows neural networks to perceive coarse 3D structures from the Truncated Signed Distance Function (TSDF) fused from all depth images available for rendering. The TSDF enables accessing the missing depth at holes on one depth image and the occluded parts that are invisible from the current view. By introducing a novel attention mechanism, we allow neural networks to directly use the depth fusion prior with the inferred occupancy as the learned implicit function. Our attention mechanism works with either a one-time fused TSDF that represents a whole scene or an incrementally fused TSDF that represents a partial scene in the context of Simultaneous Localization and Mapping (SLAM). Our evaluations on widely used benchmarks including synthetic and real-world scans show our superiority over the latest neural implicit methods.


An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization ECE Department UT Austin

Neural Information Processing Systems

In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria.