Goto

Collaborating Authors


Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment Kristen Grauman

Neural Information Processing Systems

The egocentric and exocentric viewpoints of a human activity look dramatically different, yet invariant representations to link them are essential for many potential applications in robotics and augmented reality. Prior work is limited to learning view-invariant features from paired synchronized viewpoints. We relax that strong data assumption and propose to learn fine-grained action features that are invariant to the viewpoints by aligning egocentric and exocentric videos in time, even when not captured simultaneously or in the same environment. To this end, we propose AE2, a self-supervised embedding approach with two key designs: (1) an object-centric encoder that explicitly focuses on regions corresponding to hands and active objects; and (2) a contrastive-based alignment objective that leverages temporally reversed frames as negative samples. For evaluation, we establish a benchmark for fine-grained video understanding in the ego-exo context, comprising four datasets--including an ego tennis forehand dataset we collected, along with dense per-frame labels we annotated for each dataset. On the four datasets, our AE2 method strongly outperforms prior work in a variety of fine-grained downstream tasks, both in regular and cross-view settings.




Supplementary Material CAPro: Webly Supervised Learning with Cross-modality Aligned Prototypes

Neural Information Processing Systems

S1.1 WebVision1k It contains 2.4M web images collected from Google and Flickr, which share the same 1k category names with ImageNet1k [1]. For each example, we use all available description, title, and tag in its metadata for raw text preparation. Besides, we follow [2, 3] to use the subset of WebVision-Google500 for ablation studies in consideration of lower GPU resource and time consumption without losing generalization. It contains 0.48M images from Google with randomly chosen 500 categories. The testing set of ImageNet1k and its subset ImageNet500 are involved as well for evaluation. S1.2 NUS-WIDE (Web) It contains 0.26M web images from Flickr with 5k unique user tags. Each example is manually annotated with multiple labels within 81 concepts that are filtered out of the 5k tags.


Learning Multi-agent Behaviors from Distributed and Streaming Demonstrations

Neural Information Processing Systems

This paper considers the problem of inferring the behaviors of multiple interacting experts by estimating their reward functions and constraints where the distributed demonstrated trajectories are sequentially revealed to a group of learners. We formulate the problem as a distributed online bi-level optimization problem where the outer-level problem is to estimate the reward functions and the inner-level problem is to learn the constraints and corresponding policies. We propose a novel "multi-agent behavior inference from distributed and streaming demonstrations" (MA-BIRDS) algorithm that allows the learners to solve the outer-level and innerlevel problems in a single loop through intermittent communications.


IMP-MARL: a Suite of Environments for Large-scale Infrastructure Management Planning via MARL

Neural Information Processing Systems

We introduce IMP-MARL, an open-source suite of multi-agent reinforcement learning (MARL) environments for large-scale Infrastructure Management Planning (IMP), offering a platform for benchmarking the scalability of cooperative MARL methods in real-world engineering applications. In IMP, a multi-component engineering system is subject to a risk of failure due to its components' damage condition. Specifically, each agent plans inspections and repairs for a specific system component, aiming to minimise maintenance costs while cooperating to minimise system failure risk. With IMP-MARL, we release several environments including one related to offshore wind structural systems, in an effort to meet today's needs to improve management strategies to support sustainable and reliable energy systems. Supported by IMP practical engineering environments featuring up to 100 agents, we conduct a benchmark campaign, where the scalability and performance of state-of-the-art cooperative MARL methods are compared against expert-based heuristic policies. The results reveal that centralised training with decentralised execution methods scale better with the number of agents than fully centralised or decentralised RL approaches, while also outperforming expert-based heuristic policies in most IMP environments. Based on our findings, we additionally outline remaining cooperation and scalability challenges that future MARL methods should still address. Through IMP-MARL, we encourage the implementation of new environments and the further development of MARL methods.


Online Adaptive Policy Selection in Time-Varying Systems: No-Regret via Contractive Perturbations

Neural Information Processing Systems

We study online adaptive policy selection in systems with time-varying costs and dynamics. We develop the Gradient-based Adaptive Policy Selection (GAPS) algorithm together with a general analytical framework for online policy selection via online optimization. Under our proposed notion of contractive policy classes, we show that GAPS approximates the behavior of an ideal online gradient descent algorithm on the policy parameters while requiring less information and computation. When convexity holds, our algorithm is the first to achieve optimal policy regret. When convexity does not hold, we provide the first local regret bound for online policy selection. Our numerical experiments show that GAPS can adapt to changing environments more quickly than existing benchmarks.



Better Private Linear Regression Through Better Private Feature Selection Travis Dick Matthew Joseph

Neural Information Processing Systems

Existing work on differentially private linear regression typically assumes that end users can precisely set data bounds or algorithmic hyperparameters. End users often struggle to meet these requirements without directly examining the data (and violating privacy). Recent work has attempted to develop solutions that shift these burdens from users to algorithms, but they struggle to provide utility as the feature dimension grows. This work extends these algorithms to higher-dimensional problems by introducing a differentially private feature selection method based on Kendall rank correlation. We prove a utility guarantee for the setting where features are normally distributed and conduct experiments across 25 datasets. We find that adding this private feature selection step before regression significantly broadens the applicability of "plug-and-play" private linear regression algorithms at little additional cost to privacy, computation, or decision-making by the end user.