Chain of Agents: Large Language Models Collaborating on Long-Context Tasks
Addressing the challenge of effectively processing long contexts has become a critical issue for Large Language Models (LLMs). Two common strategies have emerged: 1) reducing the input length, such as retrieving relevant chunks by Retrieval-Augmented Generation (RAG), and 2) expanding the context window limit of LLMs. However, both strategies have drawbacks: input reduction has no guarantee of covering the part with needed information, while window extension struggles with focusing on the pertinent information for solving the task. To mitigate these limitations, we propose Chain-of-Agents (CoA), a novel framework that harnesses multi-agent collaboration through natural language to enable information aggregation and context reasoning across various LLMs over long-context tasks. CoA consists of multiple worker agents who sequentially communicate to handle different segmented portions of the text, followed by a manager agent who synthesizes these contributions into a coherent final output. CoA processes the entire input by interleaving reading and reasoning, and it mitigates long context focus issues by assigning each agent a short context. We perform a comprehensive evaluation of CoA on a wide range of long-context tasks in question answering, summarization, and code completion, demonstrating significant improvements by up to 10% over strong baselines of RAG, Full-Context, and multi-agent LLMs.
SDformer: Similarity-driven Discrete Transformer For Time Series Generation
The superior generation capabilities of Denoised Diffusion Probabilistic Models (DDPMs) have been effectively showcased across a multitude of domains. Recently, the application of DDPMs has extended to time series generation tasks, where they have significantly outperformed other deep generative models, often by a substantial margin. However, we have discovered two main challenges with these methods: 1) the inference time is excessively long; 2) there is potential for improvement in the quality of the generated time series. In this paper, we propose a method based on discrete token modeling technique called Similarity-driven Discrete Transformer (SDformer). Specifically, SDformer utilizes a similarity-driven vector quantization method for learning high-quality discrete token representations of time series, followed by a discrete Transformer for data distribution modeling at the token level. Comprehensive experiments show that our method significantly outperforms competing approaches in terms of the generated time series quality while also ensuring a short inference time. Furthermore, without requiring retraining, SDformer can be directly applied to predictive tasks and still achieve commendable results.
Conformal Prediction for Class-wise Coverage via Augmented Label Rank Calibration
Conformal prediction (CP) is an emerging uncertainty quantification framework that allows us to construct a prediction set to cover the true label with a pre-specified marginal or conditional probability. Although the valid coverage guarantee has been extensively studied for classification problems, CP often produces large prediction sets which may not be practically useful. This issue is exacerbated for the setting of class-conditional coverage on classification tasks with many and/or imbalanced classes. This paper proposes the Rank Calibrated Class-conditional CP (RC3P) algorithm to reduce the prediction set sizes to achieve class-conditional coverage, where the valid coverage holds for each class. In contrast to the standard class-conditional CP (CCP) method that uniformly thresholds the class-wise conformity score for each class, the augmented label rank calibration step allows RC3P to selectively iterate this class-wise thresholding subroutine only for a subset of classes whose class-wise top-k error is small. We prove that agnostic to the classifier and data distribution, RC3P achieves class-wise coverage. We also show that RC3P reduces the size of prediction sets compared to the CCP method. Comprehensive experiments on multiple real-world datasets demonstrate that RC3P achieves class-wise coverage and 26.25% reduction in prediction set sizes on average.
Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
One key challenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, i.e., the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class-and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses.
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees
Safeguarding intellectual property and preventing potential misuse of AI-generated images are of paramount importance. This paper introduces a robust and agile plug-and-play watermark detection framework, referred to as RAW. As a departure from existing encoder-decoder methods, which incorporate fixed binary codes as watermarks within latent representations, our approach introduces learnable watermarks directly into the original image data. Subsequently, we employ a classifier that is jointly trained with the watermark to detect the presence of the watermark. The proposed framework is compatible with various generative architectures and supports on-the-fly watermark injection after training. By incorporating state-ofthe-art smoothing techniques, we show that the framework also provides provable guarantees regarding the false positive rate for misclassifying a watermarked image, even in the presence of adversarial attacks targeting watermark removal. Experiments on a diverse range of images generated by state-of-the-art diffusion models demonstrate substantially improved watermark encoding speed and watermark detection performance, under adversarial attacks, while maintaining image quality. Our code is publicly available here.
Hierarchical Object-Aware Dual-Level Contrastive Learning for Domain Generalized Stereo Matching
Stereo matching algorithms that leverage end-to-end convolutional neural networks have recently demonstrated notable advancements in performance. However, a common issue is their susceptibility to domain shifts, hindering their ability in generalizing to diverse, unseen realistic domains. We argue that existing stereo matching networks overlook the importance of extracting semantically and structurally meaningful features. To address this gap, we propose an effective hierarchical object-aware dual-level contrastive learning (HODC) framework for domain generalized stereo matching. Our framework guides the model in extracting features that support semantically and structurally driven matching by segmenting objects at different scales and enhances correspondence between intra-and inter-scale regions from the left feature map to the right using dual-level contrastive loss. HODC can be integrated with existing stereo matching models in the training stage, requiring no modifications to the architecture. Remarkably, using only synthetic datasets for training, HODC achieves state-of-the-art generalization performance with various existing stereo matching network architectures, across multiple realistic datasets.
Transformers as Game Players: Provable In-context Game-playing Capabilities of Pre-trained Models
The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
LLaMo: Large Language Model-based Molecular Graph Assistant
Large Language Models (LLMs) have demonstrated remarkable generalization and instruction-following capabilities with instruction tuning. The advancements in LLMs and instruction tuning have led to the development of Large Vision-Language Models (LVLMs). However, the competency of the LLMs and instruction tuning have been less explored in the molecular domain. Thus, we propose LLaMo: Large Language Model-based Molecular graph assistant, which is an end-toend trained large molecular graph language model. To bridge the discrepancy between the language and graph modalities, we present the multi-level graph projector that transforms graph representations into graph tokens by abstracting the output representations of each GNN layer and motif representations with the cross-attention mechanism. We also introduce machine-generated molecular graph instruction data to instruction-tune the large molecular graph-language model for general-purpose molecule and language understanding. Our extensive experiments demonstrate that LLaMo shows the best performance on diverse tasks, such as molecular description generation, property prediction, and IUPAC name prediction. The code of LLaMo is available at https://github.com/mlvlab/LLaMo.