204da255aea2cd4a75ace6018fad6b4d-Paper.pdf
Random forests are learning algorithms that build large collections of random trees and make predictions by averaging the individual tree predictions. In this paper, we consider various tree constructions and examine how the choice of parameters affects the generalization error of the resulting random forests as the sample size goes to infinity. We show that subsampling of data points during the tree construction phase is important: Forests can become inconsistent with either no subsampling or too severe subsampling. As a consequence, even highly randomized trees can lead to inconsistent forests if no subsampling is used, which implies that some of the commonly used setups for random forests can be inconsistent. As a second consequence we can show that trees that have good performance in nearest-neighbor search can be a poor choice for random forests.
On the Consistency of Maximum Likelihood Estimation of Probabilistic Principal Component Analysis
Probabilistic principal component analysis (PPCA) is currently one of the most used statistical tools to reduce the ambient dimension of the data. From multidimensional scaling to the imputation of missing data, PPCA has a broad spectrum of applications ranging from science and engineering to quantitative finance. Despite this wide applicability in various fields, hardly any theoretical guarantees exist to justify the soundness of the maximum likelihood (ML) solution for this model. In fact, it is well known that the maximum likelihood estimation (MLE) can only recover the true model parameters up to a rotation. The main obstruction is posed by the inherent identifiability nature of the PPCA model resulting from the rotational symmetry of the parameterization. To resolve this ambiguity, we propose a novel approach using quotient topological spaces and in particular, we show that the maximum likelihood solution is consistent in an appropriate quotient Euclidean space. Furthermore, our consistency results encompass a more general class of estimators beyond the MLE. Strong consistency of the ML estimate and consequently strong covariance estimation of the PPCA model have also been established under a compactness assumption.
Diff-eRank: A Novel Rank-Based Metric for Evaluating Large Language Models
Large Language Models (LLMs) have transformed natural language processing and extended their powerful capabilities to multi-modal domains. As LLMs continue to advance, it is crucial to develop diverse and appropriate metrics for their evaluation. In this paper, we introduce a novel rank-based metric, Diff-eRank, grounded in information theory and geometry principles. Diff-eRank assesses LLMs by analyzing their hidden representations, providing a quantitative measure of how efficiently they eliminate redundant information during training. We demonstrate the applicability of Diff-eRank in both single-modal (e.g., language) and multimodal settings. For language models, our results show that Diff-eRank increases with model size and correlates well with conventional metrics such as loss and accuracy. In the multi-modal context, we propose an alignment evaluation method based on the eRank, and verify that contemporary multi-modal LLMs exhibit strong alignment performance based on our method.
OpenDataVal: a Unified Benchmark for Data Valuation Columbia University Stanford University James Zou
Assessing the quality and impact of individual data points is critical for improving model performance and mitigating undesirable biases within the training dataset. Several data valuation algorithms have been proposed to quantify data quality, however, there lacks a systemic and standardized benchmarking system for data valuation. In this paper, we introduce OpenDataVal, an easy-to-use and unified benchmark framework that empowers researchers and practitioners to apply and compare various data valuation algorithms. OpenDataVal provides an integrated environment that includes (i) a diverse collection of image, natural language, and tabular datasets, (ii) implementations of eleven different state-of-the-art data valuation algorithms, and (iii) a prediction model API that can import any models in scikit-learn. Furthermore, we propose four downstream machine learning tasks for evaluating the quality of data values. We perform benchmarking analysis using OpenDataVal, quantifying and comparing the efficacy of state-of-the-art data valuation approaches. We find that no single algorithm performs uniformly best across all tasks, and an appropriate algorithm should be employed for a user's downstream task. OpenDataVal is publicly available at https://opendataval.github.io
Supplementary Material for Text Promptable Surgical Instrument Segmentation with Vision-Language Models Meng Wei
In the supplementary material, we include additional method details, experimental results and analysis, and visualizations that could not be accommodated in the main text due to space constraints. Below, we provide the surgical instrument prompts generated by utilizing OpenAI GPT-4 [8] and Google Bard [2]. They are used in our experiments section. OpenAI GPT-4 based prompts The input template for OpenAI GPT-4 is defined as: Please describe the appearance of [class_name] in endoscopic surgery, and change the description to a phrase with subject, and not use colons. We obtain the following prompts for different surgical instruments: Bipolar forceps.
Architecture Matters: Uncovering Implicit Mechanisms in Graph Contrastive Learning
With the prosperity of contrastive learning for visual representation learning (VCL), it is also adapted to the graph domain and yields promising performance. However, through a systematic study of various graph contrastive learning (GCL) methods, we observe that some common phenomena among existing GCL methods that are quite different from the original VCL methods, including 1) positive samples are not a must for GCL; 2) negative samples are not necessary for graph classification, neither for node classification when adopting specific normalization modules; 3) data augmentations have much less influence on GCL, as simple domain-agnostic augmentations (e.g., Gaussian noise) can also attain fairly good performance. By uncovering how the implicit inductive bias of GNNs works in contrastive learning, we theoretically provide insights into the above intriguing properties of GCL. Rather than directly porting existing VCL methods to GCL, we advocate for more attention toward the unique architecture of graph learning and consider its implicit influence when designing GCL methods.