Peilin Zhao
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang
Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.
DUOL: A Double Updating Approach for Online Learning
Peilin Zhao, Steven C. Hoi, Rong Jin
In most online learning algorithms, the weights assigned to the misclassified examples (or support vectors) remain unchanged during the entire learning process. This is clearly insufficient since when a new misclassified example is added to the pool of support vectors, we generally expect it to affect the weights for the existing support vectors. In this paper, we propose a new online learning method, termed Double Updating Online Learning, or DUOL for short. Instead of only assigning a fixed weight to the misclassified example received in current trial, the proposed online learning algorithm also tries to update the weight for one of the existing support vectors. We show that the mistake bound can be significantly improved by the proposed online learning method. Encouraging experimental results show that the proposed technique is in general considerably more effective than the state-of-the-art online learning algorithms.
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang
Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.