Goto

Collaborating Authors

Fair Active Ranking from Pairwise Preferences

arXiv.org Artificial Intelligence

We investigate the problem of probably approximately correct and fair (PACF) ranking of items by adaptively evoking pairwise comparisons. Given a set of $n$ items that belong to disjoint groups, our goal is to find an $(\epsilon, \delta)$-PACF-Ranking according to a fair objective function that we propose. We assume access to an oracle, wherein, for each query, the learner can choose a pair of items and receive stochastic winner feedback from the oracle. Our proposed objective function asks to minimize the $\ell_q$ norm of the error of the groups, where the error of a group is the $\ell_p$ norm of the error of all the items within that group, for $p, q \geq 1$. This generalizes the objective function of $\epsilon$-Best-Ranking, proposed by Saha & Gopalan (2019). By adopting our objective function, we gain the flexibility to explore fundamental fairness concepts like equal or proportionate errors within a unified framework. Adjusting parameters $p$ and $q$ allows tailoring to specific fairness preferences. We present both group-blind and group-aware algorithms and analyze their sample complexity. We provide matching lower bounds up to certain logarithmic factors for group-blind algorithms. For a restricted class of group-aware algorithms, we show that we can get reasonable lower bounds. We conduct comprehensive experiments on both real-world and synthetic datasets to complement our theoretical findings.


Guidance with Spherical Gaussian Constraint for Conditional Diffusion

arXiv.org Artificial Intelligence

Recent advances in diffusion models attempt to handle conditional generative tasks by utilizing a differentiable loss function for guidance without the need for additional training. While these methods achieved certain success, they often compromise on sample quality and require small guidance step sizes, leading to longer sampling processes. This paper reveals that the fundamental issue lies in the manifold deviation during the sampling process when loss guidance is employed. We theoretically show the existence of manifold deviation by establishing a certain lower bound for the estimation error of the loss guidance. To mitigate this problem, we propose Diffusion with Spherical Gaussian constraint (DSG), drawing inspiration from the concentration phenomenon in high-dimensional Gaussian distributions. DSG effectively constrains the guidance step within the intermediate data manifold through optimization and enables the use of larger guidance steps. Furthermore, we present a closed-form solution for DSG denoising with the Spherical Gaussian constraint. Notably, DSG can seamlessly integrate as a plugin module within existing training-free conditional diffusion methods. Implementing DSG merely involves a few lines of additional code with almost no extra computational overhead, yet it leads to significant performance improvements. Comprehensive experimental results in various conditional generation tasks validate the superiority and adaptability of DSG in terms of both sample quality and time efficiency.


Comparative Analysis of LLaMA and ChatGPT Embeddings for Molecule Embedding

arXiv.org Artificial Intelligence

Purpose: Large Language Models (LLMs) like ChatGPT and LLaMA are increasingly recognized for their potential in the field of cheminformatics, particularly in interpreting Simplified Molecular Input Line Entry System (SMILES), a standard method for representing chemical structures. These LLMs can decode SMILES strings into vector representations, providing a novel approach to understanding chemical graphs. Methods: We investigate the performance of ChatGPT and LLaMA in embedding SMILES strings. Our evaluation focuses on two key applications: molecular property (MP) prediction and drug-drug interaction (DDI) prediction, both essential in drug development and healthcare. Results: We find that SMILES embeddings generated using LLaMA outperform those from ChatGPT in both MP and DDI prediction tasks. Notably, LLaMA-based SMILES embeddings show results comparable to existing methods in both prediction tasks. Conclusion: The application of LLMs in cheminformatics, particularly in utilizing SMILES embeddings, shows significant promise for advancing drug development. This includes improving the prediction of chemical properties and facilitating the drug discovery process. GitHub: https://github.com/sshaghayeghs/LLaMA-VS-ChatGPT


Functional SDE approximation inspired by a deep operator network architecture

arXiv.org Artificial Intelligence

A novel approach to approximate solutions of Stochastic Differential Equations (SDEs) by Deep Neural Networks is derived and analysed. The architecture is inspired by the notion of Deep Operator Networks (DeepONets), which is based on operator learning in function spaces in terms of a reduced basis also represented in the network. In our setting, we make use of a polynomial chaos expansion (PCE) of stochastic processes and call the corresponding architecture SDEONet. The PCE has been used extensively in the area of uncertainty quantification (UQ) with parametric partial differential equations. This however is not the case with SDE, where classical sampling methods dominate and functional approaches are seen rarely. A main challenge with truncated PCEs occurs due to the drastic growth of the number of components with respect to the maximum polynomial degree and the number of basis elements. The proposed SDEONet architecture aims to alleviate the issue of exponential complexity by learning an optimal sparse truncation of the Wiener chaos expansion. A complete convergence and complexity analysis is presented, making use of recent Neural Network approximation results. Numerical experiments illustrate the promising performance of the suggested approach in 1D and higher dimensions.


Quantized Approximately Orthogonal Recurrent Neural Networks

arXiv.org Artificial Intelligence

Orthogonal recurrent neural networks (ORNNs) are an appealing option for learning tasks involving time series with long-term dependencies, thanks to their simplicity and computational stability. However, these networks often require a substantial number of parameters to perform well, which can be prohibitive in power-constrained environments, such as compact devices. One approach to address this issue is neural network quantization. The construction of such networks remains an open problem, acknowledged for its inherent instability.In this paper, we explore the quantization of the recurrent and input weight matrices in ORNNs, leading to Quantized approximately Orthogonal RNNs (QORNNs). We investigate one post-training quantization (PTQ) strategy and three quantization-aware training (QAT) algorithms that incorporate orthogonal constraints and quantized weights. Empirical results demonstrate the advantages of employing QAT over PTQ. The most efficient model achieves results similar to state-of-the-art full-precision ORNN and LSTM on a variety of standard benchmarks, even with 3-bits quantization.


Sociolinguistically Informed Interpretability: A Case Study on Hinglish Emotion Classification

arXiv.org Artificial Intelligence

Emotion classification is a challenging task in NLP due to the inherent idiosyncratic and subjective nature of linguistic expression, especially with code-mixed data. Pre-trained language models (PLMs) have achieved high performance for many tasks and languages, but it remains to be seen whether these models learn and are robust to the differences in emotional expression across languages. Sociolinguistic studies have shown that Hinglish speakers switch to Hindi when expressing negative emotions and to English when expressing positive emotions. To understand if language models can learn these associations, we study the effect of language on emotion prediction across 3 PLMs on a Hinglish emotion classification dataset. Using LIME and token level language ID, we find that models do learn these associations between language choice and emotional expression. Moreover, having code-mixed data present in the pre-training can augment that learning when task-specific data is scarce. We also conclude from the misclassifications that the models may overgeneralise this heuristic to other infrequent examples where this sociolinguistic phenomenon does not apply.


Towards Understanding the Word Sensitivity of Attention Layers: A Study via Random Features

arXiv.org Artificial Intelligence

Unveiling the reasons behind the exceptional success of transformers requires a better understanding of why attention layers are suitable for NLP tasks. In particular, such tasks require predictive models to capture contextual meaning which often depends on one or few words, even if the sentence is long. Our work studies this key property, dubbed word sensitivity (WS), in the prototypical setting of random features. We show that attention layers enjoy high WS, namely, there exists a vector in the space of embeddings that largely perturbs the random attention features map. The argument critically exploits the role of the softmax in the attention layer, highlighting its benefit compared to other activations (e.g., ReLU). In contrast, the WS of standard random features is of order $1/\sqrt{n}$, $n$ being the number of words in the textual sample, and thus it decays with the length of the context. We then translate these results on the word sensitivity into generalization bounds: due to their low WS, random features provably cannot learn to distinguish between two sentences that differ only in a single word; in contrast, due to their high WS, random attention features have higher generalization capabilities. We validate our theoretical results with experimental evidence over the BERT-Base word embeddings of the imdb review dataset.


Regulation Games for Trustworthy Machine Learning

arXiv.org Artificial Intelligence

Existing work on trustworthy machine learning (ML) often concentrates on individual aspects of trust, such as fairness or privacy. Additionally, many techniques overlook the distinction between those who train ML models and those responsible for assessing their trustworthiness. To address these issues, we propose a framework that views trustworthy ML as a multi-objective multi-agent optimization problem. This naturally lends itself to a game-theoretic formulation we call regulation games. We illustrate a particular game instance, the SpecGame in which we model the relationship between an ML model builder and fairness and privacy regulators. Regulators wish to design penalties that enforce compliance with their specification, but do not want to discourage builders from participation. Seeking such socially optimal (i.e., efficient for all agents) solutions to the game, we introduce ParetoPlay. This novel equilibrium search algorithm ensures that agents remain on the Pareto frontier of their objectives and avoids the inefficiencies of other equilibria. Simulating SpecGame through ParetoPlay can provide policy guidance for ML Regulation. For instance, we show that for a gender classification application, regulators can enforce a differential privacy budget that is on average 4.0 lower if they take the initiative to specify their desired guarantee first.


Unraveling the Key of Machine Learning Solutions for Android Malware Detection

arXiv.org Artificial Intelligence

Android malware detection serves as the front line against malicious apps. With the rapid advancement of machine learning (ML), ML-based Android malware detection has attracted increasing attention due to its capability of automatically capturing malicious patterns from Android APKs. These learning-driven methods have reported promising results in detecting malware. However, the absence of an in-depth analysis of current research progress makes it difficult to gain a holistic picture of the state of the art in this area. This paper presents a comprehensive investigation to date into ML-based Android malware detection with empirical and quantitative analysis. We first survey the literature, categorizing contributions into a taxonomy based on the Android feature engineering and ML modeling pipeline. Then, we design a general-propose framework for ML-based Android malware detection, re-implement 12 representative approaches from different research communities, and evaluate them from three primary dimensions, i.e., effectiveness, robustness, and efficiency. The evaluation reveals that ML-based approaches still face open challenges and provides insightful findings like more powerful ML models are not the silver bullet for designing better malware detectors. We further summarize our findings and put forth recommendations to guide future research.


Putting Context in Context: the Impact of Discussion Structure on Text Classification

arXiv.org Artificial Intelligence

Current text classification approaches usually focus on the content to be classified. Contextual aspects (both linguistic and extra-linguistic) are usually neglected, even in tasks based on online discussions. Still in many cases the multi-party and multi-turn nature of the context from which these elements are selected can be fruitfully exploited. In this work, we propose a series of experiments on a large dataset for stance detection in English, in which we evaluate the contribution of different types of contextual information, i.e. linguistic, structural and temporal, by feeding them as natural language input into a transformer-based model. We also experiment with different amounts of training data and analyse the topology of local discussion networks in a privacy-compliant way. Results show that structural information can be highly beneficial to text classification but only under certain circumstances (e.g. depending on the amount of training data and on discussion chain complexity). Indeed, we show that contextual information on smaller datasets from other classification tasks does not yield significant improvements. Our framework, based on local discussion networks, allows the integration of structural information, while minimising user profiling, thus preserving their privacy.