Goto

Collaborating Authors

arXiv.org Artificial Intelligence


Domain Randomization for Object Counting

arXiv.org Artificial Intelligence

Recently, the use of synthetic datasets based on game engines has been shown to improve the performance of several tasks in computer vision. However, these datasets are typically only appropriate for the specific domains depicted in computer games, such as urban scenes involving vehicles and people. In this paper, we present an approach to generate synthetic datasets for object counting for any domain without the need for photo-realistic techniques manually generated by expensive teams of 3D artists. We introduce a domain randomization approach for object counting based on synthetic datasets that are quick and inexpensive to generate. We deliberately avoid photorealism and drastically increase the variability of the dataset, producing images with random textures and 3D transformations, which improves generalization. Experiments show that our method facilitates good performance on various real word object counting datasets for multiple domains: people, vehicles, penguins, and fruit. The source code is available at: https://github.com/enric1994/dr4oc


Low-rank features based double transformation matrices learning for image classification

arXiv.org Artificial Intelligence

Linear regression is a supervised method that has been widely used in classification tasks. In order to apply linear regression to classification tasks, a technique for relaxing regression targets was proposed. However, methods based on this technique ignore the pressure on a single transformation matrix due to the complex information contained in the data. A single transformation matrix in this case is too strict to provide a flexible projection, thus it is necessary to adopt relaxation on transformation matrix. This paper proposes a double transformation matrices learning method based on latent low-rank feature extraction. The core idea is to use double transformation matrices for relaxation, and jointly projecting the learned principal and salient features from two directions into the label space, which can share the pressure of a single transformation matrix. Firstly, the low-rank features are learned by the latent low rank representation (LatLRR) method which processes the original data from two directions. In this process, sparse noise is also separated, which alleviates its interference on projection learning to some extent. Then, two transformation matrices are introduced to process the two features separately, and the information useful for the classification is extracted. Finally, the two transformation matrices can be easily obtained by alternate optimization methods. Through such processing, even when a large amount of redundant information is contained in samples, our method can also obtain projection results that are easy to classify. Experiments on multiple data sets demonstrate the effectiveness of our approach for classification, especially for complex scenarios.


A hybrid 2-stage vision transformer for AI-assisted 5 class pathologic diagnosis of gastric endoscopic biopsies

arXiv.org Artificial Intelligence

Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate. Although artificial intelligence (AI) has brought a great promise to assist pathologist to screen digitalized whole slide images, automatic classification systems for guiding proper GC treatment based on clinical guideline are still lacking. Here, we propose an AI system classifying 5 classes of GC histology, which can be perfectly matched to general treatment guidance. The AI system, mimicking the way pathologist understand slides through multi-scale self-attention mechanism using a 2-stage Vision Transformer, demonstrates clinical capability by achieving diagnostic sensitivity of above 85% for both internal and external cohort analysis. Furthermore, AI-assisted pathologists showed significantly improved diagnostic sensitivity by 10% within 18% saved screening time compared to human pathologists. Our AI system has a great potential for providing presumptive pathologic opinion for deciding proper treatment for early GC patients.


GRAPHSHAP: Motif-based Explanations for Black-box Graph Classifiers

arXiv.org Artificial Intelligence

Most methods for explaining black-box classifiers (e.g., on tabular data, images, or time series) rely on measuring the impact that the removal/perturbation of features has on the model output. This forces the explanation language to match the classifier features space. However, when dealing with graph data, in which the basic features correspond essentially to the adjacency information describing the graph structure (i.e., the edges), this matching between features space and explanation language might not be appropriate. In this regard, we argue that (i) a good explanation method for graph classification should be fully agnostic with respect to the internal representation used by the black-box; and (ii) a good explanation language for graph classification tasks should be represented by higher-order structures, such as motifs. The need to decouple the feature space (edges) from the explanation space (motifs) is thus a major challenge towards developing actionable explanations for graph classification tasks. In this paper we introduce GRAPHSHAP, a Shapley-based approach able to provide motif-based explanations for black-box graph classifiers, assuming no knowledge whatsoever about the model or its training data: the only requirement is that the black-box can be queried at will. Furthermore, we introduce additional auxiliary components such as a synthetic graph dataset generator, algorithms for subgraph mining and ranking, a custom graph convolutional layer, and a kernel to approximate the explanation scores while maintaining linear time complexity. Finally, we test GRAPHSHAP on a real-world brain-network dataset consisting of patients affected by Autism Spectrum Disorder and a control group. Our experiments highlight how the classification provided by a black-box model can be effectively explained by few connectomics patterns.


Two-Stage Architectural Fine-Tuning with Neural Architecture Search using Early-Stopping in Image Classification

arXiv.org Artificial Intelligence

Deep neural networks (NN) perform well in various tasks (e.g., computer vision) because of the convolutional neural networks (CNN). However, the difficulty of gathering quality data in the industry field hinders the practical use of NN. To cope with this issue, the concept of transfer learning (TL) has emerged, which leverages the fine-tuning of NNs trained on large-scale datasets in data-scarce situations. Therefore, this paper suggests a two-stage architectural fine-tuning method for image classification, inspired by the concept of neural architecture search (NAS). One of the main ideas of our proposed method is a mutation with base architectures, which reduces the search cost by using given architectural information. Moreover, an early-stopping is also considered which directly reduces NAS costs. Experimental results verify that our proposed method reduces computational and searching costs by up to 28.2% and 22.3%, compared to existing methods.


Visual Ground Truth Construction as Faceted Classification

arXiv.org Artificial Intelligence

Recent work in Machine Learning and Computer Vision has provided evidence of systematic design flaws in the development of major object recognition benchmark datasets. One such example is ImageNet, wherein, for several categories of images, there are incongruences between the objects they represent and the labels used to annotate them. The consequences of this problem are major, in particular considering the large number of machine learning applications, not least those based on Deep Neural Networks, that have been trained on these datasets. In this paper we posit the problem to be the lack of a knowledge representation (KR) methodology providing the foundations for the construction of these ground truth benchmark datasets. Accordingly, we propose a solution articulated in three main steps: (i) deconstructing the object recognition process in four ordered stages grounded in the philosophical theory of teleosemantics; (ii) based on such stratification, proposing a novel four-phased methodology for organizing objects in classification hierarchies according to their visual properties; and (iii) performing such classification according to the faceted classification paradigm. The key novelty of our approach lies in the fact that we construct the classification hierarchies from visual properties exploiting visual genus-differentiae, and not from linguistically grounded properties. The proposed approach is validated by a set of experiments on the ImageNet hierarchy of musical experiments.


Seeing Like a Toolkit: How Toolkits Envision the Work of AI Ethics

arXiv.org Artificial Intelligence

Numerous toolkits have been developed to support ethical AI development. However, toolkits, like all tools, encode assumptions in their design about what work should be done and how. In this paper, we conduct a qualitative analysis of 27 AI ethics toolkits to critically examine how the work of ethics is imagined and how it is supported by these toolkits. Specifically, we examine the discourses toolkits rely on when talking about ethical issues, who they imagine should do the work of ethics, and how they envision the work practices involved in addressing ethics. We find that AI ethics toolkits largely frame the work of AI ethics to be technical work for individual technical practitioners, despite calls for engaging broader sets of stakeholders in grappling with social aspects of AI ethics, and without contending with the organizational and political implications of AI ethics work in practice. Among all toolkits, we identify a mismatch between the imagined work of ethics and the support the toolkits provide for doing that work. We identify a lack of guidance around how to navigate organizational power dynamics as they relate to performing ethical work. We use these omissions to chart future work for researchers and designers of AI ethics toolkits.


Mining On Alzheimer's Diseases Related Knowledge Graph to Identity Potential AD-related Semantic Triples for Drug Repurposing

arXiv.org Artificial Intelligence

To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. Among three knowledge graph completion models, TransE outperformed the other two (MR = 13.45, Hits@1 = 0.306). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.


Adiabatic Quantum Computing for Multi Object Tracking

arXiv.org Artificial Intelligence

Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time. The association step naturally leads to discrete optimization problems. As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware. Adiabatic quantum computing (AQC) offers a solution for this, as it has the potential to provide a considerable speedup on a range of NP-hard optimization problems in the near future. However, current MOT formulations are unsuitable for quantum computing due to their scaling properties. In this work, we therefore propose the first MOT formulation designed to be solved with AQC. We employ an Ising model that represents the quantum mechanical system implemented on the AQC. We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers. Finally, we demonstrate that our MOT problem is already solvable on the current generation of real quantum computers for small examples, and analyze the properties of the measured solutions.


CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-based Autonomous Urban Driving

arXiv.org Artificial Intelligence

Vision-based autonomous urban driving in dense traffic is quite challenging due to the complicated urban environment and the dynamics of the driving behaviors. Widely-applied methods either heavily rely on hand-crafted rules or learn from limited human experience, which makes them hard to generalize to rare but critical scenarios. In this paper, we present a novel CAscade Deep REinforcement learning framework, CADRE, to achieve model-free vision-based autonomous urban driving. In CADRE, to derive representative latent features from raw observations, we first offline train a Co-attention Perception Module (CoPM) that leverages the co-attention mechanism to learn the inter-relationships between the visual and control information from a pre-collected driving dataset. Cascaded by the frozen CoPM, we then present an efficient distributed proximal policy optimization framework to online learn the driving policy under the guidance of particularly designed reward functions. We perform a comprehensive empirical study with the CARLA NoCrash benchmark as well as specific obstacle avoidance scenarios in autonomous urban driving tasks. The experimental results well justify the effectiveness of CADRE and its superiority over the state-of-the-art by a wide margin.