Goto

Collaborating Authors

arXiv.org Artificial Intelligence


Efficient CNN-LSTM based Image Captioning using Neural Network Compression

arXiv.org Artificial Intelligence

Modern Neural Networks are eminent in achieving state of the art performance on tasks under Computer Vision, Natural Language Processing and related verticals. However, they are notorious for their voracious memory and compute appetite which further obstructs their deployment on resource limited edge devices. In order to achieve edge deployment, researchers have developed pruning and quantization algorithms to compress such networks without compromising their efficacy. Such compression algorithms are broadly experimented on standalone CNN and RNN architectures while in this work, we present an unconventional end to end compression pipeline of a CNN-LSTM based Image Captioning model. The model is trained using VGG16 or ResNet50 as an encoder and an LSTM decoder on the flickr8k dataset. We then examine the effects of different compression architectures on the model and design a compression architecture that achieves a 73.1% reduction in model size, 71.3% reduction in inference time and a 7.7% increase in BLEU score as compared to its uncompressed counterpart.


On the experimental feasibility of quantum state reconstruction via machine learning

arXiv.org Artificial Intelligence

We determine the resource scaling of machine learning-based quantum state reconstruction methods, in terms of both inference and training, for systems of up to four qubits. Further, we examine system performance in the low-count regime, likely to be encountered in the tomography of high-dimensional systems. Finally, we implement our quantum state reconstruction method on a IBM Q quantum computer and confirm our results.


Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL

arXiv.org Artificial Intelligence

Reinforcement learning holds tremendous promise in accelerator controls. The primary goal of this paper is to show how this approach can be utilised on an operational level on accelerator physics problems. Despite the success of model-free reinforcement learning in several domains, sample-efficiency still is a bottle-neck, which might be encompassed by model-based methods. We compare well-suited purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system. We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the asymptotic performance of the model-free method is slightly superior. The model-based algorithm is implemented in a DYNA-style using an uncertainty aware model, and the model-free algorithm is based on tailored deep Q-learning. In both cases, the algorithms were implemented in a way, which presents increased noise robustness as omnipresent in accelerator control problems. Code is released in https://github.com/MathPhysSim/FERMI_RL_Paper.


High-Throughput Synchronous Deep RL

arXiv.org Artificial Intelligence

Deep reinforcement learning (RL) is computationally demanding and requires processing of many data points. Synchronous methods enjoy training stability while having lower data throughput. In contrast, asynchronous methods achieve high throughput but suffer from stability issues and lower sample efficiency due to `stale policies.' To combine the advantages of both methods we propose High-Throughput Synchronous Deep Reinforcement Learning (HTS-RL). In HTS-RL, we perform learning and rollouts concurrently, devise a system design which avoids `stale policies' and ensure that actors interact with environment replicas in an asynchronous manner while maintaining full determinism. We evaluate our approach on Atari games and the Google Research Football environment. Compared to synchronous baselines, HTS-RL is 2-6$\times$ faster. Compared to state-of-the-art asynchronous methods, HTS-RL has competitive throughput and consistently achieves higher average episode rewards.


Game-theoretic Models of Moral and Other-Regarding Agents

arXiv.org Artificial Intelligence

We investigate Kantian equilibria in finite normal form games, a class of non-Nashian, morally motivated courses of action that was recently proposed in the economics literature. We highlight a number of problems with such equilibria, including computational intractability, a high price of miscoordination, and expensive/problematic extension to general normal form games. We point out that such a proper generalization will likely involve the concept of program equilibrium. Finally we propose some general, intuitive, computationally tractable, other-regarding equilibria related to Kantian equilibria, as well as a class of courses of action that interpolates between purely self-regarding and Kantian behavior.


Computational principles of intelligence: learning and reasoning with neural networks

arXiv.org Artificial Intelligence

Despite significant achievements and current interest in machine learning and artificial intelligence, the quest for a theory of intelligence, allowing general and efficient problem solving, has done little progress. This work tries to contribute in this direction by proposing a novel framework of intelligence based on three principles. First, the generative and mirroring nature of learned representations of inputs. Second, a grounded, intrinsically motivated and iterative process for learning, problem solving and imagination. Third, an ad hoc tuning of the reasoning mechanism over causal compositional representations using inhibition rules. Together, those principles create a systems approach offering interpretability, continuous learning, common sense and more. This framework is being developed from the following perspectives: as a general problem solving method, as a human oriented tool and finally, as model of information processing in the brain.


XAI-P-T: A Brief Review of Explainable Artificial Intelligence from Practice to Theory

arXiv.org Artificial Intelligence

In this work, we report the practical and theoretical aspects of Explainable AI (XAI) identified in some fundamental literature. Although there is a vast body of work on representing the XAI backgrounds, most of the corpuses pinpoint a discrete direction of thoughts. Providing insights into literature in practice and theory concurrently is still a gap in this field. This is important as such connection facilitates a learning process for the early stage XAI researchers and give a bright stand for the experienced XAI scholars. Respectively, we first focus on the categories of black-box explanation and give a practical example. Later, we discuss how theoretically explanation has been grounded in the body of multidisciplinary fields. Finally, some directions of future works are presented.


Predicting Events In MOBA Games: Dataset, Attribution, and Evaluation

arXiv.org Artificial Intelligence

The multiplayer online battle arena (MOBA) games are becoming increasingly popular in recent years. Consequently, many efforts have been devoted to providing pre-game or in-game predictions for MOBA games. However, these works are limited in the following two aspects: 1) the lack of sufficient in-game features; 2) the absence of interpretability in the prediction results. These two limitations greatly restrict their practical performances and industrial applications. In this work, we collect and release a large-scale dataset containing rich in-game features for the popular MOBA game Honor of Kings. We then propose to predict four types of important events in an interpretable way by attributing the predictions to the input features using two gradient-based attribution methods: Integrated Gradients and SmoothGrad. To evaluate the explanatory power of different models and attribution methods, a fidelity-based evaluation metric is further proposed. Finally, we evaluate the accuracy and Fidelity of several competitive methods on the collected dataset to assess how well do machines predict the events in MOBA games.


Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification

arXiv.org Artificial Intelligence

Many unsupervised domain adaptive (UDA) person re-identification (ReID) approaches combine clustering-based pseudo-label prediction with feature fine-tuning. However, because of domain gap, the pseudo-labels are not always reliable and there are noisy/incorrect labels. This would mislead the feature representation learning and deteriorate the performance. In this paper, we propose to estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels, by suppressing the contribution of noisy samples. We build our baseline framework using the mean teacher method together with an additional contrastive loss. We have observed that a sample with a wrong pseudo-label through clustering in general has a weaker consistency between the output of the mean teacher model and the student model. Based on this finding, we propose to exploit the uncertainty (measured by consistency levels) to evaluate the reliability of the pseudo-label of a sample and incorporate the uncertainty to re-weight its contribution within various ReID losses, including the identity (ID) classification loss per sample, the triplet loss, and the contrastive loss. Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.


Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries

arXiv.org Artificial Intelligence

Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.