Goto

Collaborating Authors

 Flanders


A Fast Convoluted Story: Scaling Probabilistic Inference for Integer Arithmetic

Neural Information Processing Systems

As illustrated by the success of integer linear programming, linear integer arithmetic is a powerful tool for modelling combinatorial problems. Furthermore, the probabilistic extension of linear programming has been used to formulate problems in neurosymbolic AI. However, two key problems persist that prevent the adoption of neurosymbolic techniques beyond toy problems. First, probabilistic inference is inherently hard, #P-hard to be precise. Second, the discrete nature of integers renders the construction of meaningful gradients challenging, which is problematic for learning. In order to mitigate these issues, we formulate linear arithmetic over integer-valued random variables as tensor manipulations that can be implemented in a straightforward fashion using modern deep learning libraries. At the core of our formulation lies the observation that the addition of two integer-valued random variables can be performed by adapting the fast Fourier transform to probabilities in the log-domain. By relying on tensor operations we obtain a differentiable data structure, which unlocks, virtually for free, gradient-based learning. In our experimental validation we show that tensorising probabilistic linear integer arithmetic and leveraging the fast Fourier transform allows us to push the state of the art by several orders of magnitude in terms of inference and learning times.


Continual Learning With Quasi-Newton Methods

arXiv.org Artificial Intelligence

Received 17 February 2025, accepted 5 March 2025, date of publication 13 March 2025, date of current version 21 March 2025. Continual Learning with Quasi-Newton Methods STEVEN VANDER EECKT and HUGO VAN HAMME (Senior, IEEE) Department Electrical Engineering ESAT-PSI, KU Leuven, B-3001 Leuven, Belgium Corresponding author: Steven Vander Eeeckt (e-mail: steven.vandereeckt@esat.kuleuven.be).ABSTRACT Catastrophic forgetting remains a major challenge when neural networks learn tasks sequentially. Elastic Weight Consolidation (EWC) attempts to address this problem by introducing a Bayesian-inspired regularization loss to preserve knowledge of previously learned tasks. However, EWC relies on a Laplace approximation where the Hessian is simplified to the diagonal of the Fisher information matrix, assuming uncorrelated model parameters. This overly simplistic assumption often leads to poor Hessian estimates, limiting its effectiveness. To overcome this limitation, we introduce Continual Learning with Sampled Quasi-Newton (CSQN), which leverages Quasi-Newton methods to compute more accurate Hessian approximations. Experimental results across four benchmarks demonstrate that CSQN consistently outperforms EWC and other state-of-the-art baselines, including rehearsal-based methods. CSQN reduces EWC's forgetting by 50% and improves its performance by 8% on average. Notably, CSQN achieves superior results on three out of four benchmarks, including the most challenging scenarios, highlighting its potential as a robust solution for continual learning.INDEX TERMS artificial neural networks, catastrophic forgetting, continual learning, quasi-Newton methods I. INTRODUCTION Since the 2010s, Artificial Neural Networks (ANNs) have been able to match or even surpass human performance on a wide variety of tasks. However, when presented with a set of tasks to be learned sequentially--a setting referred to as Continual Learning (CL)--ANNs suffer from catastrophic forgetting [1]. Unlike humans, ANNs struggle to retain previously learned knowledge when extending their knowledge. Naively adapting an ANN to a new task generally leads to a deterioration in the network's performance on previous tasks. Many CL methods have been proposed to alleviate catastrophic forgetting. One of the most well-known is Elastic Weight Consolidation (EWC) [2], which approaches CL from a Bayesian perspective. After training on a task, EWC uses Laplace approximation [3] to estimate a posterior distribution over the model parameters for that task. When training on the next task, this posterior is used via a regularization loss to prevent the model from catastrophically forgetting the previous task. To estimate the Hessian, which is needed in the Laplace approximation to measure the (un)certainty of the model parameters, EWC uses the Fisher Information Matrix (FIM). Furthermore, to simplify the computation, EWC assumes that the FIM is approximately diagonal.


Credal Deep Ensembles for Uncertainty Quantification Kaizheng Wang

Neural Information Processing Systems

This paper introduces an innovative approach to classification called Credal Deep Ensembles (CreDEs), namely, ensembles of novel Credal-Set Neural Networks (CreNets). CreNets are trained to predict a lower and an upper probability bound for each class, which, in turn, determine a convex set of probabilities (credal set) on the class set. The training employs a loss inspired by distributionally robust optimization which simulates the potential divergence of the test distribution from the training distribution, in such a way that the width of the predicted probability interval reflects the'epistemic' uncertainty about the future data distribution. Ensembles can be constructed by training multiple CreNets, each associated with a different random seed, and averaging the outputted intervals. Extensive experiments are conducted on various out-of-distributions (OOD) detection benchmarks (CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, ImageNet vs ImageNet-O) and using different network architectures (ResNet50, VGG16, and ViT Base). Compared to Deep Ensemble baselines, CreDEs demonstrate higher test accuracy, lower expected calibration error, and significantly improved epistemic uncertainty estimation.


Teacher Teacher LLM LLM Teaching

Neural Information Processing Systems

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, in human education, teaching enhances not only the students but also the teachers by fostering more rigorous and clearer reasoning, as well as deeper knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements.



Machine learning identifies nullclines in oscillatory dynamical systems

arXiv.org Artificial Intelligence

We introduce CLINE (Computational Learning and Identification of Nullclines), a neural network-based method that uncovers the hidden structure of nullclines from oscillatory time series data. Unlike traditional approaches aiming at direct prediction of system dynamics, CLINE identifies static geometric features of the phase space that encode the (non)linear relationships between state variables. It overcomes challenges such as multiple time scales and strong nonlinearities while producing interpretable results convertible into symbolic differential equations. We validate CLINE on various oscillatory systems, showcasing its effectiveness.


Faster Repeated Evasion Attacks in Tree Ensembles Laurens Devos Department of Computer Science Department of Computer Science KU Leuven

Neural Information Processing Systems

Tree ensembles are one of the most widely used model classes. However, these models are susceptible to adversarial examples, i.e., slightly perturbed examples that elicit a misprediction. There has been significant research on designing approaches to construct such examples for tree ensembles. But this is a computationally challenging problem that often must be solved a large number of times (e.g., for all examples in a training set). This is compounded by the fact that current approaches attempt to find such examples from scratch. In contrast, we exploit the fact that multiple similar problems are being solved. Specifically, our approach exploits the insight that adversarial examples for tree ensembles tend to perturb a consistent but relatively small set of features. We show that we can quickly identify this set of features and use this knowledge to speedup constructing adversarial examples.


Parallel Backpropagation for Shared-Feature Visualization

Neural Information Processing Systems

High-level visual brain regions contain subareas in which neurons appear to respond more strongly to examples of a particular semantic category, like faces or bodies, rather than objects. However, recent work has shown that while this finding holds on average, some out-of-category stimuli also activate neurons in these regions. This may be due to visual features common among the preferred class also being present in other images. Here, we propose a deep-learning-based approach for visualizing these features. For each neuron, we identify relevant visual features driving its selectivity by modelling responses to images based on latent activations of a deep neural network.


Interpretable Concept-Based Memory Reasoning

Neural Information Processing Systems

The lack of transparency in the decision-making processes of deep learning systems presents a significant challenge in modern artificial intelligence (AI), as it impairs users' ability to rely on and verify these systems. To address this challenge, Concept-Based Models (CBMs) have made significant progress by incorporating human-interpretable concepts into deep learning architectures. This approach allows predictions to be traced back to specific concept patterns that users can understand and potentially intervene on. However, existing CBMs' task predictors are not fully interpretable, preventing a thorough analysis and any form of formal verification of their decision-making process prior to deployment, thereby raising significant reliability concerns. To bridge this gap, we introduce Conceptbased Memory Reasoner (CMR), a novel CBM designed to provide a humanunderstandable and provably-verifiable task prediction process. Our approach is to model each task prediction as a neural selection mechanism over a memory of learnable logic rules, followed by a symbolic evaluation of the selected rule. The presence of an explicit memory and the symbolic evaluation allow domain experts to inspect and formally verify the validity of certain global properties of interest for the task prediction process. Experimental results demonstrate that CMR achieves better accuracy-interpretability trade-offs to state-of-the-art CBMs, discovers logic rules consistent with ground truths, allows for rule interventions, and allows pre-deployment verification.