Goto

Collaborating Authors

EMR-M ERGING: Tuning-Free High-Performance Model Merging Chenyu Huang 1, Tao Chen 1

Neural Information Processing Systems

The success of pretrain-finetune paradigm brings about the release of numerous model weights. In this case, merging models finetuned on different tasks to enable a single model with multi-task capabilities is gaining increasing attention for its practicability. Existing model merging methods usually suffer from (1) significant performance degradation or (2) requiring tuning by additional data or training. In this paper, we rethink and analyze the existing model merging paradigm. We discover that using a single model's weights can hardly simulate all the models' performance.


Zhaoxuan Wu

Neural Information Processing Systems

Large language models (LLMs) have shown impressive capabilities in real-world applications. The capability of in-context learning (ICL) allows us to adapt an LLM to downstream tasks by including input-label exemplars in the prompt without model fine-tuning. However, the quality of these exemplars in the prompt greatly impacts performance, highlighting the need for an effective automated exemplar selection method. Recent studies have explored retrieval-based approaches to select exemplars tailored to individual test queries, which can be undesirable due to extra test-time computation and an increased risk of data exposure. Moreover, existing methods fail to adequately account for the impact of exemplar ordering on the performance.


On the Optimal Time Complexities in Decentralized Stochastic Asynchronous Optimization

Neural Information Processing Systems

We consider the decentralized stochastic asynchronous optimization setup, where many workers asynchronously calculate stochastic gradients and asynchronously communicate with each other using edges in a multigraph. For both homogeneous and heterogeneous setups, we prove new time complexity lower bounds under the assumption that computation and communication speeds are bounded.


GLinSAT: The General Linear Satisfiability Neural Network Layer By Accelerated Gradient Descent 2

Neural Information Processing Systems

Ensuring that the outputs of neural networks satisfy specific constraints is crucial for applying neural networks to real-life decision-making problems. In this paper, we consider making a batch of neural network outputs satisfy bounded and general linear constraints.


Diffuser Lite: Towards Real-time Diffusion Planning Zibin Dong 1 Jianye Hao 1 Yifu Yuan

Neural Information Processing Systems

Diffusion planning has been recognized as an effective decision-making paradigm in various domains. The capability of generating high-quality long-horizon trajectories makes it a promising research direction. However, existing diffusion planning methods suffer from low decision-making frequencies due to the expensive iterative sampling cost.


Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning

Neural Information Processing Systems

Uncertainty quantification (UQ) is a crucial but challenging task in many highdimensional learning problems to increase the confidence of a given predictor. We develop a new data-driven approach for UQ in regression that applies both to classical optimization approaches such as the LASSO as well as to neural networks. One of the most notable UQ techniques is the debiased LASSO, which modifies the LASSO to allow for the construction of asymptotic confidence intervals by decomposing the estimation error into a Gaussian and an asymptotically vanishing bias component. However, in real-world problems with finite-dimensional data, the bias term is often too significant to disregard, resulting in overly narrow confidence intervals. Our work rigorously addresses this issue and derives a data-driven adjustment that corrects the confidence intervals for a large class of predictors by estimating the means and variances of the bias terms from training data, exploiting high-dimensional concentration phenomena. This gives rise to non-asymptotic confidence intervals, which can help avoid overestimating certainty in critical applications such as MRI diagnosis. Importantly, our analysis extends beyond sparse regression to data-driven predictors like neural networks, enhancing the reliability of model-based deep learning. Our findings bridge the gap between established theory and the practical applicability of such methods.


Data Poisoning Attacks on Factorization-Based Collaborative Filtering

Neural Information Processing Systems

Recommendation and collaborative filtering systems are important in modern information and e-commerce applications. As these systems are becoming increasingly popular in the industry, their outputs could affect business decision making, introducing incentives for an adversarial party to compromise the availability or integrity of such systems. We introduce a data poisoning attack on collaborative filtering systems. We demonstrate how a powerful attacker with full knowledge of the learner can generate malicious data so as to maximize his/her malicious objectives, while at the same time mimicking normal user behavior to avoid being detected. While the complete knowledge assumption seems extreme, it enables a robust assessment of the vulnerability of collaborative filtering schemes to highly motivated attacks.


A Sober Look at the Robustness of CLIPs to Spurious Features Qizhou Wang 1 Yong Lin 2 Yongqiang Chen 3 Ludwig Schmidt 4

Neural Information Processing Systems

Large vision language models, such as CLIP, demonstrate impressive robustness to spurious features than single-modal models trained on ImageNet. However, existing test datasets are typically curated based on ImageNet-trained models, which aim to capture the spurious features inherited in ImageNet. Benchmarking CLIP models based on the ImageNet-oriented spurious features may not be sufficient to reflect the extent to which CLIP models are robust to spurious correlations within CLIP training data, e.g., LAION. To this end, we craft a new challenging dataset named CounterAnimal designed to reveal the reliance of CLIP models on realistic spurious features. Specifically, we split animal photos into groups according to the backgrounds, and then identify a pair of groups for each class where a CLIP model shows high-performance drops across the two groups. Our evaluations show that the spurious features captured by CounterAnimal are generically learned by CLIP models with different backbones and pre-train data, yet have limited influence for ImageNet models. We provide theoretical insights that the CLIP objective cannot offer additional robustness. Furthermore, we also re-evaluate strategies such as scaling up parameters and high-quality pre-trained data. We find that they still help mitigate the spurious features, providing a promising path for future developments.


Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models

Neural Information Processing Systems

Guidance is a crucial technique for extracting the best performance out of imagegenerating diffusion models. Traditionally, a constant guidance weight has been applied throughout the sampling chain of an image. We show that guidance is clearly harmful toward the beginning of the chain (high noise levels), largely unnecessary toward the end (low noise levels), and only beneficial in the middle. We thus restrict it to a specific range of noise levels, improving both the inference speed and result quality. This limited guidance interval improves the record FID in ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and qualitatively beneficial across different sampler parameters, network architectures, and datasets, including the large-scale setting of Stable Diffusion XL. We thus suggest exposing the guidance interval as a hyperparameter in all diffusion models that use guidance.


LP-3DGS: Learning to Prune 3D Gaussian Splatting

Neural Information Processing Systems

Recently, 3D Gaussian Splatting (3DGS) has become one of the mainstream methodologies for novel view synthesis (NVS) due to its high quality and fast rendering speed. However, as a point-based scene representation, 3DGS potentially generates a large number of Gaussians to fit the scene, leading to high memory usage. Improvements that have been proposed require either an empirical preset pruning ratio or importance score threshold to prune the point cloud. Such hyperparameters require multiple rounds of training to optimize and achieve the maximum pruning ratio while maintaining the rendering quality for each scene. In this work, we propose learning-to-prune 3DGS (LP-3DGS), where a trainable binary mask is applied to the importance score to automatically find a favorable pruning ratio. Instead of using the traditional straight-through estimator (STE) method to approximate the binary mask gradient, we redesign the masking function to leverage the Gumbel-Sigmoid method, making it differentiable and compatible with the existing training process of 3DGS. Extensive experiments have shown that LP-3DGS consistently achieves a good balance between efficiency and high quality.