Relation-Constrained Decoding for Text Generation

Neural Information Processing Systems 

The dominant paradigm for neural text generation nowadays is seq2seq learning with large-scale pretrained language models. However, it is usually difficult to manually constrain the generation process of these models. Prior studies have introduced Lexically Constrained Decoding (LCD) to ensure the presence of prespecified words or phrases in the output. However, simply applying lexical constraints has no guarantee of the grammatical or semantic relations between words. Thus, more elaborate constraints are needed. To this end, we first propose a new constrained decoding scenario named Relation-Constrained Decoding (RCD), which requires the model's output to contain several given word pairs with respect to the given relations between them.