Reducing Smoothness with Expressive Memory Enhanced Hierarchical Graph Neural Networks
Bailie, Thomas, Koh, Yun Sing, Mukkavilli, S. Karthik, Vetrova, Varvara
Graphical forecasting models learn the structure of time series data via projecting onto a graph, with recent techniques capturing spatial-temporal associations between variables via edge weights. Hierarchical variants offer a distinct advantage by analysing the time series across multiple resolutions, making them particularly effective in tasks like global weather forecasting, where low-resolution variable interactions are significant. A critical challenge in hierarchical models is information loss during forward or backward passes through the hierarchy. We propose the Hierarchical Graph Flow (HiGFlow) network, which introduces a memory buffer variable of dynamic size to store previously seen information across variable resolutions. We theoretically show two key results: HiGFlow reduces smoothness when mapping onto new feature spaces in the hierarchy and non-strictly enhances the utility of message-passing by improving Weisfeiler-Lehman (WL) expressivity. Empirical results demonstrate that HiGFlow outperforms state-of-the-art baselines, including transformer models, by at least an average of 6.1% in MAE and 6.2% in RMSE. Code is available at https://github.com/TB862/ HiGFlow.git.
Time-to-event prediction for grouped variables using Exclusive Lasso
The integration of high-dimensional genomic data and clinical data into time-to-event prediction models has gained significant attention due to the growing availability of these datasets. Traditionally, a Cox regression model is employed, concatenating various covariate types linearly. Given that much of the data may be redundant or irrelevant, feature selection through penalization is often desirable. A notable characteristic of these datasets is their organization into blocks of distinct data types, such as methylation and clinical predictors, which requires selecting a subset of covariates from each group due to high intra-group correlations. For this reason, we propose utilizing Exclusive Lasso regularization in place of standard Lasso penalization. We apply our methodology to a real-life cancer dataset, demonstrating enhanced survival prediction performance compared to the conventional Cox regression model.
Machine Learning-assisted High-speed Combinatorial Optimization with Ising Machines for Dynamically Changing Problems
Hamakawa, Yohei, Kashimata, Tomoya, Yamasaki, Masaya, Tatsumura, Kosuke
Quantum or quantum-inspired Ising machines have recently shown promise in solving combinatorial optimization problems in a short time. Real-world applications, such as time division multiple access (TDMA) scheduling for wireless multi-hop networks and financial trading, require solving those problems sequentially where the size and characteristics change dynamically. However, using Ising machines involves challenges to shorten system-wide latency due to the transfer of large Ising model or the cloud access and to determine the parameters for each problem. Here we show a combinatorial optimization method using embedded Ising machines, which enables solving diverse problems at high speed without runtime parameter tuning. We customize the algorithm and circuit architecture of the simulated bifurcation-based Ising machine to compress the Ising model and accelerate computation and then built a machine learning model to estimate appropriate parameters using extensive training data. In TDMA scheduling for wireless multi-hop networks, our demonstration has shown that the sophisticated system can adapt to changes in the problem and showed that it has a speed advantage over conventional methods.
Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Vardhan, Harsh, Yu, Xiaofan, Rosing, Tajana, Mazumdar, Arya
Federated learning (FL) is a distributed machine learning paradigm where multiple clients conduct local training based on their private data, then the updated models are sent to a central server for global aggregation. The practical convergence of FL is challenged by multiple factors, with the primary hurdle being the heterogeneity among clients. This heterogeneity manifests as data heterogeneity concerning local data distribution and latency heterogeneity during model transmission to the server. While prior research has introduced various efficient client selection methods to alleviate the negative impacts of either of these heterogeneities individually, efficient methods to handle real-world settings where both these heterogeneities exist simultaneously do not exist. In this paper, we propose two novel theoretically optimal client selection schemes that can handle both these heterogeneities. Our methods involve solving simple optimization problems every round obtained by minimizing the theoretical runtime to convergence. Empirical evaluations on 9 datasets with non-iid data distributions, 2 practical delay distributions, and non-convex neural network models demonstrate that our algorithms are at least competitive to and at most 20 times better than best existing baselines.
EEG-EyeTrack: A Benchmark for Time Series and Functional Data Analysis with Open Challenges and Baselines
Afonso, Tiago Vasconcelos, Heinrichs, Florian
A new benchmark dataset for functional data analysis (FDA) is presented, focusing on the reconstruction of eye movements from EEG data. The contribution is twofold: first, open challenges and evaluation metrics tailored to FDA applications are proposed. Second, functional neural networks are used to establish baseline results for the primary regression task of reconstructing eye movements from EEG signals. Baseline results are reported for the new dataset, based on consumer-grade hardware, and the EEGEyeNet dataset, based on research-grade hardware.
Sustainable broadcasting in Blockchain Networks with Reinforcement Learning
Valko, Danila, Kudenko, Daniel
Recent estimates put the carbon footprint of Bitcoin and Ethereum at an average of 64 and 26 million tonnes of CO2 per year, respectively. To address this growing problem, several possible approaches have been proposed in the literature: creating alternative blockchain consensus mechanisms, applying redundancy reduction techniques, utilizing renewable energy sources, and employing energy-efficient devices, etc. In this paper, we follow the second avenue and propose an efficient approach based on reinforcement learning that improves the block broadcasting scheme in blockchain networks. The analysis and experimental results confirmed that the proposed improvement of the block propagation scheme could cleverly handle network dynamics and achieve better results than the default approach. Additionally, our technical integration of the simulator and developed RL environment can be used as a complete solution for further study of new schemes and protocols that use RL or other ML techniques.
CrossFormer: Cross-Segment Semantic Fusion for Document Segmentation
Ni, Tongke, Fan, Yang, Zhou, Junru, Wu, Xiangping, Chen, Qingcai
Text semantic segmentation involves partitioning a document into multiple paragraphs with continuous semantics based on the subject matter, contextual information, and document structure. Traditional approaches have typically relied on preprocessing documents into segments to address input length constraints, resulting in the loss of critical semantic information across segments. To address this, we present CrossFormer, a transformer-based model featuring a novel cross-segment fusion module that dynamically models latent semantic dependencies across document segments, substantially elevating segmentation accuracy. Additionally, CrossFormer can replace rule-based chunk methods within the Retrieval-Augmented Generation (RAG) system, producing more semantically coherent chunks that enhance its efficacy. Comprehensive evaluations confirm CrossFormer's state-of-the-art performance on public text semantic segmentation datasets, alongside considerable gains on RAG benchmarks.
Proper scoring rules for estimation and forecast evaluation
Waghmare, Kartik, Ziegel, Johanna
In recent years, proper scoring rules have emerged as a power ful general approach for estimating probability distributions. In addition to significantly ex panding the range of modeling techniques that can be applied in practice, this has also substantially broadened the conceptual understanding of estimation methods. Originally, proper scoring rules we re conceived in meteorology as summary statistics for describing the performance of probabilisti c forecasts ( Murphy and Winkler, 1984), but they also play an important role in economics as tools for bel ief elicitation ( Schotter and Trevino, 2014). A probabilistic forecast is a probability distribution ove r the space of the possible outcomes of the future event that is stated by the forecaster. The simple st and most popular case of probabilistic forecasts arises when the outcome is binary, so the probabilistic forecast reduces to issuing a predictive probability of success. Brier ( 1950) was the first to consider the problem of devising a scoring rule which could not be "played" by a dishonest fore casting agent. He introduced the quadratic scoring rule and showed that it incentivizes a for ecasting agent to state his most accurate probability estimate when faced with uncertainty.
PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Choudhuri, Anwesa, Gao, Zhongpai, Zheng, Meng, Planche, Benjamin, Chen, Terrence, Wu, Ziyan
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce PolypSegTrack, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
A Unified Approach to Analysis and Design of Denoising Markov Models
Ren, Yinuo, Rotskoff, Grant M., Ying, Lexing
Probabilistic generative models based on measure transport, such as diffusion and flow-based models, are often formulated in the language of Markovian stochastic dynamics, where the choice of the underlying process impacts both algorithmic design choices and theoretical analysis. In this paper, we aim to establish a rigorous mathematical foundation for denoising Markov models, a broad class of generative models that postulate a forward process transitioning from the target distribution to a simple, easy-to-sample distribution, alongside a backward process particularly constructed to enable efficient sampling in the reverse direction. Leveraging deep connections with nonequilibrium statistical mechanics and generalized Doob's $h$-transform, we propose a minimal set of assumptions that ensure: (1) explicit construction of the backward generator, (2) a unified variational objective directly minimizing the measure transport discrepancy, and (3) adaptations of the classical score-matching approach across diverse dynamics. Our framework unifies existing formulations of continuous and discrete diffusion models, identifies the most general form of denoising Markov models under certain regularity assumptions on forward generators, and provides a systematic recipe for designing denoising Markov models driven by arbitrary L\'evy-type processes. We illustrate the versatility and practical effectiveness of our approach through novel denoising Markov models employing geometric Brownian motion and jump processes as forward dynamics, highlighting the framework's potential flexibility and capability in modeling complex distributions.