Goto

Collaborating Authors




Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis

Neural Information Processing Systems

Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first-cut multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA.


Learning convex polytopes with margin

Neural Information Processing Systems

We present an improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about t log t halfspaces with margins in time polynomial in t (where t is the number of halfspaces forming an optimal polytope). We also identify distinct generalizations of the notion of margin from hyperplanes to polytopes and investigate how they relate geometrically; this result may be of interest beyond the learning setting.


k-Means Clustering of Lines for Big Data

Neural Information Processing Systems

This is a straightforward generalization of the k-mean problem where the input is a set of n points instead of lines. We suggest the first PTAS that computes a (1 + ฮต)-approximation to this problem in time O(n log n) for any constant approximation error ฮต (0, 1), and constant integers k, d 1.





VLMimic: Vision Language Models are Visual Imitation Learner for Fine-grained Actions 1

Neural Information Processing Systems

Visual imitation learning (VIL) provides an efficient and intuitive strategy for robotic systems to acquire novel skills. Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable performance in vision and language reasoning capabilities for VIL tasks. Despite the progress, current VIL methods naively employ VLMs to learn high-level plans from human videos, relying on pre-defined motion primitives for executing physical interactions, which remains a major bottleneck. In this work, we present VLMimic, a novel paradigm that harnesses VLMs to directly learn even fine-grained action levels, only given a limited number of human videos. Specifically, VLMimic first grounds object-centric movements from human videos, and learns skills using hierarchical constraint representations, facilitating the derivation of skills with fine-grained action levels from limited human videos. These skills are refined and updated through an iterative comparison strategy, enabling efficient adaptation to unseen environments. Our extensive experiments exhibit that our VLMimic, using only 5 human videos, yields significant improvements of over 27% and 21% in RLBench and real-world manipulation tasks, and surpasses baselines by over 37% in long-horizon tasks. Code and videos are available at our home page.