Goto

Collaborating Authors

 Mingyi Hong


Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost

Neural Information Processing Systems

Despite the empirical success of the actor-critic algorithm, its theoretical understanding lags behind. In a broader context, actor-critic can be viewed as an online alternating update algorithm for bilevel optimization, whose convergence is known to be fragile. To understand the instability of actor-critic, we focus on its application to linear quadratic regulators, a simple yet fundamental setting of reinforcement learning. We establish a nonasymptotic convergence analysis of actor-critic in this setting. In particular, we prove that actor-critic finds a globally optimal pair of actor (policy) and critic (action-value function) at a linear rate of convergence. Our analysis may serve as a preliminary step towards a complete theoretical understanding of bilevel optimization with nonconvex subproblems, which is NP-hard in the worst case and is often solved using heuristics.


Variance Reduced Policy Evaluation with Smooth Function Approximation

Neural Information Processing Systems

Policy evaluation with smooth and nonlinear function approximation has shown great potential for reinforcement learning. Compared to linear function approximation, it allows for using a richer class of approximation functions such as the neural networks. Traditional algorithms are based on two timescales stochastic approximation whose convergence rate is often slow. This paper focuses on an offline setting where a trajectory of m state-action pairs are observed. We formulate the policy evaluation problem as a non-convex primal-dual, finite-sum optimization problem, whose primal sub-problem is non-convex and dual sub-problem is strongly concave. We suggest a single-timescale primal-dual gradient algorithm with variance reduction, and show that it converges to an ษ›-stationary point using O(m/ษ›) calls (in expectation) to a gradient oracle.


Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization

Neural Information Processing Systems

Despite the success of single-agent reinforcement learning, multi-agent reinforcement learning (MARL) remains challenging due to complex interactions between agents. Motivated by decentralized applications such as sensor networks, swarm robotics, and power grids, we study policy evaluation in MARL, where agents with jointly observed state-action pairs and private local rewards collaborate to learn the value of a given policy. In this paper, we propose a double averaging scheme, where each agent iteratively performs averaging over both space and time to incorporate neighboring gradient information and local reward information, respectively. We prove that the proposed algorithm converges to the optimal solution at a global geometric rate. In particular, such an algorithm is built upon a primal-dual reformulation of the mean squared projected Bellman error minimization problem, which gives rise to a decentralized convex-concave saddle-point problem. To the best of our knowledge, the proposed double averaging primal-dual optimization algorithm is the first to achieve fast finite-time convergence on decentralized convex-concave saddle-point problems.


Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost

Neural Information Processing Systems

Despite the empirical success of the actor-critic algorithm, its theoretical understanding lags behind. In a broader context, actor-critic can be viewed as an online alternating update algorithm for bilevel optimization, whose convergence is known to be fragile. To understand the instability of actor-critic, we focus on its application to linear quadratic regulators, a simple yet fundamental setting of reinforcement learning. We establish a nonasymptotic convergence analysis of actor-critic in this setting. In particular, we prove that actor-critic finds a globally optimal pair of actor (policy) and critic (action-value function) at a linear rate of convergence. Our analysis may serve as a preliminary step towards a complete theoretical understanding of bilevel optimization with nonconvex subproblems, which is NP-hard in the worst case and is often solved using heuristics.


Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization

Neural Information Processing Systems

Despite the success of single-agent reinforcement learning, multi-agent reinforcement learning (MARL) remains challenging due to complex interactions between agents. Motivated by decentralized applications such as sensor networks, swarm robotics, and power grids, we study policy evaluation in MARL, where agents with jointly observed state-action pairs and private local rewards collaborate to learn the value of a given policy. In this paper, we propose a double averaging scheme, where each agent iteratively performs averaging over both space and time to incorporate neighboring gradient information and local reward information, respectively. We prove that the proposed algorithm converges to the optimal solution at a global geometric rate. In particular, such an algorithm is built upon a primal-dual reformulation of the mean squared projected Bellman error minimization problem, which gives rise to a decentralized convex-concave saddle-point problem. To the best of our knowledge, the proposed double averaging primal-dual optimization algorithm is the first to achieve fast finite-time convergence on decentralized convex-concave saddle-point problems.




ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization

Neural Information Processing Systems

The adaptive momentum method (AdaMM), which uses past gradients to update descent directions and learning rates simultaneously, has become one of the most popular first-order optimization methods for solving machine learning problems. However, AdaMM is not suited for solving black-box optimization problems, where explicit gradient forms are difficult or infeasible to obtain. In this paper, we propose a zeroth-order AdaMM (ZO-AdaMM) algorithm, that generalizes AdaMM to the gradient-free regime. We show that the convergence rate of ZO-AdaMM for both convex and nonconvex optimization is roughly a factor ofO( d) worse than that of the first-order AdaMM algorithm, where d is problem size. In particular, we provide a deep understanding on why Mahalanobis distance matters in convergence of ZO-AdaMM and other AdaMM-type methods. As a byproduct, our analysis makes the first step toward understanding adaptive learning rate methods for nonconvex constrained optimization. Furthermore, we demonstrate two applications, designing per-image and universal adversarial attacks from blackbox neural networks, respectively. We perform extensive experiments on ImageNet and empirically show that ZO-AdaMM converges much faster to a solution of high accuracy compared with6state-of-the-art ZO optimization methods.


NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization

Neural Information Processing Systems

The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into N subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner.