Goto

Collaborating Authors

Maximum Entropy Reinforcement Learning via Energy-Based Normalizing Flow Chen-Hao Chao 1,2 Wei-Fang Sun 2

Neural Information Processing Systems

Existing Maximum-Entropy (MaxEnt) Reinforcement Learning (RL) methods for continuous action spaces are typically formulated based on actor-critic frameworks and optimized through alternating steps of policy evaluation and policy improvement. In the policy evaluation steps, the critic is updated to capture the soft Q-function. In the policy improvement steps, the actor is adjusted in accordance with the updated soft Q-function. In this paper, we introduce a new MaxEnt RL framework modeled using Energy-Based Normalizing Flows (EBFlow).


Off-Policy Risk Assessment in Contextual Bandits

Neural Information Processing Systems

Even when unable to run experiments, practitioners can evaluate prospective policies, using previously logged data. However, while the bandits literature has adopted a diverse set of objectives, most research on off-policy evaluation to date focuses on the expected reward. In this paper, we introduce Lipschitz risk functionals, a broad class of objectives that subsumes conditional value-at-risk (CVaR), variance, mean-variance, many distorted risks, and CPT risks, among others. We propose Off-Policy Risk Assessment (OPRA), a framework that first estimates a target policy's CDF and then generates plugin estimates for any collection of Lipschitz risks, providing finite sample guarantees that hold simultaneously over the entire class.






Canonical 3D Deformer Maps: Unifying parametric and non-parametric methods for dense weakly-supervised category reconstruction

Neural Information Processing Systems

We propose the Canonical 3D Deformer Map, a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects. Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings, combining their individual advantages. In particular, it learns to associate each image pixel with a deformation model of the corresponding 3D object point which is canonical, i.e. intrinsic to the identity of the point and shared across objects of the category. The result is a method that, given only sparse 2D supervision at training time, can, at test time, reconstruct the 3D shape and texture of objects from single views, while establishing meaningful dense correspondences between object instances. It also achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.



When to Act and When to Ask: Policy Learning With Deferral Under Hidden Confounding

Neural Information Processing Systems

We consider the task of learning how to act in collaboration with a human expert based on observational data. The task is motivated by high-stake scenarios such as healthcare and welfare, where algorithmic action recommendations are made to a human expert, opening the option of deferring recommendation in cases where the human might act better on their own. This task is especially challenging when dealing with observational data, as using such data runs the risk of hidden confounders whose existence can lead to biased and harmful policies. However, unlike standard policy learning, the presence of a human expert can mitigate some of these risks. We build on the work of Mozannar and Sontag [2020] on consistent surrogate loss for learning with the option of deferral to an expert, where they solve a cost-sensitive supervised classification problem. Since we are solving a causal problem, where labels do not exist, we use a causal model to learn costs which are robust to a bounded degree of hidden confounding. We prove that our approach can take advantage of the strengths of both the model and the expert to obtain a better policy than either. We demonstrate our results by conducting experiments on synthetic and semi-synthetic data and show the advantages of our method compared to baselines.