Distributed Personalized Empirical Risk Minimization
This paper advocates a new paradigm Personalized Empirical Risk Minimization (PERM) to facilitate learning from heterogeneous data sources without imposing stringent constraints on computational resources shared by participating devices. In PERM, we aim to learn a distinct model for each client by learning who to learn with and personalizing the aggregation of local empirical losses by effectively estimating the statistical discrepancy among data distributions, which entails optimal statistical accuracy for all local distributions and overcomes the data heterogeneity issue. To learn personalized models at scale, we propose a distributed algorithm that replaces the standard model averaging with model shuffling to simultaneously optimize PERM objectives for all devices. This also allows us to learn distinct model architectures (e.g., neural networks with different numbers of parameters) for different clients, thus confining underlying memory and compute resources of individual clients. We rigorously analyze the convergence of the proposed algorithm and conduct experiments that corroborate the effectiveness of the proposed paradigm.
Zero-One Laws of Graph Neural Networks
Graph neural networks (GNNs) are the de facto standard deep learning architectures for machine learning on graphs. This has led to a large body of work analyzing the capabilities and limitations of these models, particularly pertaining to their representation and extrapolation capacity. We offer a novel theoretical perspective on the representation and extrapolation capacity of GNNs, by answering the question: how do GNNs behave as the number of graph nodes become very large? Under mild assumptions, we show that when we draw graphs of increasing size from the Erdős-Rényi model, the probability that such graphs are mapped to a particular output by a class of GNN classifiers tends to either zero or to one. This class includes the popular graph convolutional network architecture. The result establishes'zero-one laws' for these GNNs, and analogously to other convergence laws, entails theoretical limitations on their capacity. We empirically verify our results, observing that the theoretical asymptotic limits are evident already on relatively small graphs.