Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow
–Neural Information Processing Systems
The former is in sharp contrast to the existing spectral initializations, while the latter handles the rather challenging nonconvex and nonsmooth amplitude-based cost function. Empirical results demonstrate that: i) The novel orthogonalitypromoting initialization method returns more accurate and robust estimates relative to its spectral counterparts; and, ii) even with the same initialization, our refinement/truncation outperforms Wirtinger-based alternatives, all corroborating the superior performance of TGGF over state-of-the-art algorithms.
Neural Information Processing Systems
Jan-20-2025, 11:46:56 GMT