Improving Generalization of Dynamic Graph Learning via Environment Prompt Kuo Yang
Out-of-distribution (OOD) generalization issue is a well-known challenge within deep learning tasks. In dynamic graphs, the change of temporal environments is regarded as the main cause of data distribution shift. While numerous OOD studies focusing on environment factors have achieved remarkable performance, they still fail to systematically solve the two issue of environment inference and utilization. In this work, we propose a novel dynamic graph learning model named EpoD based on prompt learning and structural causal model to comprehensively enhance both environment inference and utilization. Inspired by the superior performance of prompt learning in understanding underlying semantic and causal associations, we first design a self-prompted learning mechanism to infer unseen environment factors. We then rethink the role of environment variable within spatio-temporal causal structure model, and introduce a novel causal pathway where dynamic subgraphs serve as mediating variables. The extracted dynamic subgraph can effectively capture the data distribution shift by incorporating the inferred environment variables into the node-wise dependencies.
Blocked Collaborative Bandits: Online Collaborative Filtering with Per-Item Budget Constraints
We consider the problem of blocked collaborative bandits where there are multiple users, each with an associated multi-armed bandit problem. These users are grouped into latent clusters such that the mean reward vectors of users within the same cluster are identical. Our goal is to design algorithms that maximize the cumulative reward accrued by all the users over time, under the constraint that no arm of a user is pulled more than B times. This problem has been originally considered by [4], and designing regret-optimal algorithms for it has since remained an open problem. In this work, we propose an algorithm called B-LATTICE (Blocked Latent bAndiTs via maTrIx ComplEtion) that collaborates across users, while simultaneously satisfying the budget constraints, to maximize their cumulative rewards.
Explicit Disentanglement of Appearance and Perspective in Generative Models
Disentangled representation learning finds compact, independent and easy-tointerpret factors of the data. Learning such has been shown to require an inductive bias, which we explicitly encode in a generative model of images. Specifically, we propose a model with two latent spaces: one that represents spatial transformations of the input data, and another that represents the transformed data. We find that the latter naturally captures the intrinsic appearance of the data. To realize the generative model, we propose a Variationally Inferred Transformational Autoencoder (VITAE) that incorporates a spatial transformer into a variational autoencoder. We show how to perform inference in the model efficiently by carefully designing the encoders and restricting the transformation class to be diffeomorphic. Empirically, our model separates the visual style from digit type on MNIST, separates shape and pose in images of human bodies and facial features from facial shape on CelebA.
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
We provide new lower bounds on the privacy guarantee of the multi-epoch Adaptive Batch Linear Queries (ABLQ) mechanism with shuffled batch sampling, demonstrating substantial gaps when compared to Poisson subsampling; prior analysis was limited to a single epoch. Since the privacy analysis of Differentially Private Stochastic Gradient Descent (DP-SGD) is obtained by analyzing the ABLQ mechanism, this brings into serious question the common practice of implementing shuffling-based DP-SGD, but reporting privacy parameters as if Poisson subsampling was used. To understand the impact of this gap on the utility of trained machine learning models, we introduce a practical approach to implement Poisson subsampling at scale using massively parallel computation, and efficiently train models with the same. We compare the utility of models trained with Poissonsubsampling-based DP-SGD, and the optimistic estimates of utility when using shuffling, via our new lower bounds on the privacy guarantee of ABLQ with shuffling.